@inproceedings{Dokhanchi, author = {Dokhanchi, Najmeh Sadat}, title = {Reconstruction of the indoor air temperature distribution using acoustic travel-time tomography}, editor = {Arnold, J{\"o}rg}, doi = {10.25643/bauhaus-universitaet.4659}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220622-46593}, abstract = {Acoustic travel-time tomography (ATOM) is being increasingly considered recently as a remote sensing methodology to determine the indoor air temperatures distribution. It employs the relationship between the sound velocities along sound-paths and their related travel-times through measured room-impulse-response (RIR). Thus, the precise travel-time estimation is of critical importance which can be performed by applying an analysis time-window method. In this study, multiple analysis time-windows with different lengths are proposed to overcome the challenge of accurate detection of the travel-times at RIR. Hence, the ATOM-temperatures distribution has been measured at the climate chamber lab of the Bauhaus-University Weimar. As a benchmark, the temperatures of NTC thermistors are compared to the reconstructed temperatures derived from the ATOM technique illustrating this technique can be a reliable substitute for traditional thermal sensors. The numerical results indicate that the selection of an appropriate analysis time-window significantly enhances the accuracy of the reconstructed temperatures distribution.}, subject = {Bauphysik}, language = {en} } @inproceedings{Dokhanchi, author = {Dokhanchi, Najmeh Sadat}, title = {Acoustic travel time tomography: Applicability of an array of directional sound sources}, editor = {Arnold, J{\"o}rg}, doi = {10.25643/bauhaus-universitaet.4658}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220622-46589}, abstract = {The technique of Acoustic travel-time TOMography (ATOM) allows for measuring the distribution of air temperatures throughout the entire room based on the determined sound-travel-times of early reflections, currently up to second order reflections. The number of detected early reflections in the room impulse response (RIR) which stands for the desired sound paths inside the room, has a significant impact on the resolution of reconstructed temperatures. This study investigates the possibility of utilizing an array of directional sound sources for ATOM measurements instead of a single omnidirectional loudspeaker used in the previous studies [1-3]. The developed measurement setup consists of two directional sound sources placed near the edge of the floor in the climate chamber of the Bauhaus-University Weimar and one omnidirectional receiver at center of the room near the ceiling. In order to compensate for the reduced number of sound paths when using directional sound sources, it is proposed to take high-energy early reflections up to third order into account. For this purpose, the simulated travel times up to third-order image sources were implemented in the image source model (ISM) algorithm, by which these early reflections can be detected effectively for air temperature reconstructions. To minimize the uncertainties of travel-times estimation due to the positioning of the sound transducers inside the room, measurements were conducted to determine the exact emitting point of the utilized sound source i.e. its acoustic center (AC). For these measurements, three types of excitation signals (MLS, linear and logarithmic chirp signals) with various frequency ranges were used considering that the acoustic center of a sound source is a frequency dependent parameter [4]. Furthermore, measurements were conducted to determine an optimum excitation signal based on the given condition of the ATOM measurement set-up which defines an optimum method for the RIR estimation correspondingly. Finally, the uncertainty of the measuring system utilizing an array of directional sound sources was analyzed.}, subject = {Bauphysik}, language = {en} } @inproceedings{DokhanchiArnoldVogeletal., author = {Dokhanchi, Najmeh Sadat and Arnold, J{\"o}rg and Vogel, Albert and V{\"o}lker, Conrad}, title = {Acoustic Travel-Time Tomography: Optimal Positioning of Transceiver and Maximal Sound-Ray Coverage of the Room}, series = {Fortschritte der Akustik - DAGA 2019}, booktitle = {Fortschritte der Akustik - DAGA 2019}, doi = {10.25643/bauhaus-universitaet.3877}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190408-38778}, pages = {4}, abstract = {Acoustic travel-time tomography (ATOM) determines the distribution of the temperature in a propagation medium by measuring the travel-time of acoustic signals between transmitters and receivers. To employ ATOM for indoor climate measurements, the impulse responses have been measured in the climate chamber lab of the Bauhaus-University Weimar and compared with the theoretical results of its image source model (ISM). A challenging task is distinguishing the reflections of interest in the reflectogram when the sound rays have similar travel-times. This paper presents a numerical method to address this problem by finding optimal positions of transmitter and receiver, since they have a direct impact on the distribution of travel times. These optimal positions have the minimum number of simultaneous arrival time within a threshold level. Moreover, for the tomographic reconstruction, when some of the voxels remain empty of sound-rays, it leads to inaccurate determination of the air temperature within those voxels. Based on the presented numerical method, the number of empty tomographic voxels are minimized to ensure the best sound-ray coverage of the room. Subsequently, a spatial temperature distribution is estimated by simultaneous iterative reconstruction technique (SIRT). The experimental set-up in the climate chamber verifies the simulation results.}, subject = {Bauphysik}, language = {en} } @inproceedings{Jentsch, author = {Jentsch, Mark F.}, title = {Entwicklung eines Sommerreferenzjahres zur Bestimmung der sommerlichen {\"U}berhitzung von Geb{\"a}uden}, series = {Bauphysiktage Kaiserslautern 2015, Kaiserslautern, 21-22 Oktober 2015}, booktitle = {Bauphysiktage Kaiserslautern 2015, Kaiserslautern, 21-22 Oktober 2015}, editor = {Kornadt, Oliver}, publisher = {Eigenverlag der Technischen Universit{\"a}t Kaiserslautern}, address = {Kaiserslautern}, doi = {10.25643/bauhaus-universitaet.3105}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170516-31058}, pages = {53-61}, abstract = {Die Ableitung von sommer-fokussierten warmen Referenzjahren aus langj{\"a}hrigen Klimadaten erfolgt in Europa bisher nach unterschiedlichen, l{\"a}nderspezifischen Methoden, die sich in der Regel allein auf die Trockentemperatur beziehen und in der Auswahl eines zusammenh{\"a}ngenden realen Sommerhalbjahres resultieren. Simulationsergebnisse zur sommerlichen {\"U}berhitzung von nat{\"u}rlich bel{\"u}fteten Geb{\"a}uden in Deutschland und Großbritannien zeigen jedoch f{\"u}r einige Wetterstationen weniger {\"U}berhitzung f{\"u}r Simulationen mit dem sommer-fokussierten Referenzjahr als f{\"u}r solche mit dem entsprechenden Testreferenzjahr (TRY) f{\"u}r den gleichen Ort. Dies gilt insbesondere dann, wenn einzelne Monate miteinander verglichen werden. Neben der Wahl eines kompletten Halbjahres, das sowohl extrem warme als auch vergleichsweise k{\"u}hle Monate beinhalten kann, liegt dies vor allem begr{\"u}ndet in der fehlenden Ber{\"u}cksichtigung der Solarstrahlung bei der Auswahl eines warmen Referenzjahres, die jedoch eine wichtige Rolle f{\"u}r sommerliche {\"U}berhitzungserscheinungen in Geb{\"a}uden spielt. Eine verl{\"a}ssliche, allgemein anerkannte Methode zur Erstellung von sommer-fokussierten Referenzjahren erscheint daher auch im Hinblick auf die rechtlichen Rahmenbedingungen in der Europ{\"a}ischen Union, die Strategien zur nat{\"u}rlichen Bel{\"u}ftung von Neubauten und Sanierungen beg{\"u}nstigen, erforderlich. Diese Arbeit pr{\"a}sentiert einen Ansatz zur Erstellung eines Sommerreferenzjahres (Summer Reference Year - SRY) aus dem TRY eines gegebenen Ortes und langj{\"a}hrigen Klimadaten. Die existierenden TRY-Daten werden hierbei skaliert, um den Bedingungen f{\"u}r Trockentemperatur und Solarstrahlung von nah-extremen Kandidatenjahren zu entsprechen, die separat {\"u}ber einen statistischen Ansatz ausgew{\"a}hlt werden. Anschließend werden Feuchttemperatur, Windgeschwindigkeit und Luftdruck des TRY durch lineare Korrelationen mit der Trockentemperatur angepasst, um die entsprechenden SRY-Daten zu erhalten. Der Vorteil dieser Methode liegt darin, dass das grundlegende Wettermuster des TRY erhalten bleibt und somit eine klare Relation zwischen SRY und TRY besteht, die eine Vergleichbarkeit von Simulationsergebnissen gew{\"a}hrleistet. {\"U}ber vergleichende Geb{\"a}udesimulationen mit dem zugrundeliegenden TRY und langj{\"a}hrigen Klimadatens{\"a}tzen kann nachgewiesen werden, dass sich das SRY zur Ermittlung sommerlicher {\"U}berhitzungserscheinungen in nat{\"u}rlich bel{\"u}fteten Geb{\"a}uden eignet. Weiterhin kann gezeigt werden, dass das SRY im Gegensatz zur direkten Nutzung eines Kandidatenjahres f{\"u}r einen nah-extremen Sommer die M{\"o}glichkeit eines monatsscharfen Vergleichs mit dem TRY erlaubt und frei von wenig repr{\"a}sentativen Besonderheiten ist, die in den entsprechenden Kandidatenjahren vorhanden sein k{\"o}nnen.}, subject = {Bauphysik}, language = {de} } @inproceedings{PetersenMeissner2000, author = {Petersen, Michael and Meißner, Udo F.}, title = {Energieoptimierte Geb{\"a}udeplanung mit verteilter Informationsmodellierung}, doi = {10.25643/bauhaus-universitaet.606}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-6066}, year = {2000}, abstract = {n allen Stadien des Planungsprozesses von Geb{\"a}uden nehmen Entwurfsentscheidungen starken Einfluß auf die bauphysikalische Qualit{\"a}t eines Geb{\"a}udes. Im Rahmen dieses Beitrags wird deshalb die Integration bauphysikalischer Gesichtspunkte in den Planungsprozeß vorgestellt, bei welcher dem Fachingenieur geeignete Werkzeuge zur Verf{\"u}gung gestellt werden, die es erlauben, das zu planende Geb{\"a}ude als Einheit von baulicher H{\"u}lle, Anlagentechnik und Nutzung zu betrachten. Darauf aufbauend wird eine gezielte {\"U}berpr{\"u}fung des Geb{\"a}udemodells mit Hilfe von bauphysikalischen Nachweisen und Simulationen durchgef{\"u}hrt, um eine bauphysikalische Entscheidungsunterst{\"u}tzung im Entwurfsprozeß vornehmen zu k{\"o}nnen. Das erarbeitete Programmsystem VAMOS (Verteilte Applikation zur Modellierung und Optimierung bauphysikalischer Systeme) nutzt die Middleware-Technologie CORBA konsequent f{\"u}r die dynamische, netzwerkweite Integration f{\"u}nf verschiedener aufgabenspezifischer Komponenten: Die erste Komponente zur Modellerzeugung und -manipulation wurde auf Basis des CAD-Systems AutoCAD als ARX-Laufzeitmodul erstellt. Dadurch ist es einerseits m{\"o}glich, bestehende Planungsabl{\"a}ufe unter Verwendung von Standardwerkzeugen des entwerfenden Ingenieurs zu erhalten, andererseits k{\"o}nnen die umfangreichen F{\"a}higkeiten des AutoCAD-Geometriekerns f{\"u}r die Erstellung komplexer dreidimensionaler Bauteilgeometrien genutzt werden. In der zweiten Komponenten wurde eine objektorientiertes Datenbanksystem in das Gesamtsystem integriert, das auch f{\"u}r die Verwaltung verschiedener Versionen von Geb{\"a}udeentw{\"u}rfen verwendet wird. Die bauphysikalischen Nachweise, die auf Basis der zentral im Netzwerk bereitgestellten Modelle automatisiert durchgef{\"u}hrt werden k{\"o}nnen, wurden auf Basis der Java-Applet-Technologie abgebildet, um die zentrale Wartbarkeit und Anpassbarkeit an Ver{\"a}nderungen der Vorschriften und Gesetzesgrundlagen zu erm{\"o}glichen. Dabei wurden sowohl die aktuelle W{\"a}rmeschutzverordnung (WSVO) als auch die Energieeinsparverordnung (EnEV) ber{\"u}cksichtigt. F{\"u}r die ganzheitliche Erfassung des Geb{\"a}udeenergiehaushaltes wurde das Simulationsprogramm TRNSYS um ein Schnittstellenmodul unter Verwendung von IDL-Interfaces erweitert, so daß die direkte Integration der umfangreichen Funktionalit{\"a}ten in das Gesamtsystem m{\"o}glich wird. Um die Modellierung auf der Basis von realistischen Parametern durchf{\"u}hren zu k{\"o}nnen, wurde eine Komponente entwickelt, die unter Verwendung der Technologie mobiler Internet-Agenten die dynamische Recherche von herstellerspezifischen Parametern im Internet erm{\"o}glicht.}, subject = {Bauphysik}, language = {de} }