@article{KreskowskiRendleFroehlich, author = {Kreskowski, Adrian and Rendle, Gareth and Fr{\"o}hlich, Bernd}, title = {Efficient Direct Isosurface Rasterization of Scalar Volumes}, series = {Computer Graphics Forum}, volume = {2022}, journal = {Computer Graphics Forum}, number = {Volume 4, Issue 7}, publisher = {Wiley Blackwell}, address = {Oxford}, doi = {10.1111/cgf.14670}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230525-63835}, pages = {215 -- 226}, abstract = {In this paper we propose a novel and efficient rasterization-based approach for direct rendering of isosurfaces. Our method exploits the capabilities of task and mesh shader pipelines to identify subvolumes containing potentially visible isosurface geometry, and to efficiently extract primitives which are consumed on the fly by the rasterizer. As a result, our approach requires little preprocessing and negligible additional memory. Direct isosurface rasterization is competitive in terms of rendering performance when compared with ray-marching-based approaches, and significantly outperforms them for increasing resolution in most situations. Since our approach is entirely rasterization based, it affords straightforward integration into existing rendering pipelines, while allowing the use of modern graphics hardware features, such as multi-view stereo for efficient rendering of stereoscopic image pairs for geometry-bound applications. Direct isosurface rasterization is suitable for applications where isosurface geometry is highly variable, such as interactive analysis scenarios for static and dynamic data sets that require frequent isovalue adjustment.}, subject = {Rendering}, language = {en} } @article{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Qualitative evaluation of the flow supplied by personalized ventilation using schlieren imaging and thermography}, series = {Building and Environment}, volume = {2020}, journal = {Building and Environment}, number = {Volume 167, article 106450}, publisher = {Elsevier}, address = {New York}, doi = {10.25643/bauhaus-universitaet.4511}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211008-45117}, pages = {11}, abstract = {Personalized ventilation (PV) is a mean of delivering conditioned outdoor air into the breathing zone of the occupants. This study aims to qualitatively investigate the personalized flows using two methods of visualization: (1) schlieren imaging using a large schlieren mirror and (2) thermography using an infrared camera. While the schlieren imaging was used to render the velocity and mass transport of the supplied flow, thermography was implemented to visualize the air temperature distribution induced by the PV. Both studies were conducted using a thermal manikin to simulate an occupant facing a PV outlet. As a reference, the flow supplied by an axial fan and a cased axial fan was visualized with the schlieren system as well and compared to the flow supplied by PV. Schlieren visualization results indicate that the steady, low-turbulence flow supplied by PV was able to penetrate the thermal convective boundary layer encasing the manikin's body, providing clean air for inhalation. Contrarily, the axial fan diffused the supplied air over a large target area with high turbulence intensity; it only disturbed the convective boundary layer rather than destroying it. The cased fan supplied a flow with a reduced target area which allowed supplying more air into the breathing zone compared to the fan. The results of thermography visualization showed that the supplied cool air from PV penetrated the corona-shaped thermal boundary layer. Furthermore, the supplied air cooled the surface temperature of the face, which indicates the large impact of PV on local thermal sensation and comfort.}, subject = {Bildverarbeitung}, language = {en} } @article{SellerhoffMilbradtLippert1997, author = {Sellerhoff, F. and Milbradt, Peter and Lippert, C.}, title = {Ein dimensionsunabh{\"a}ngiges topologisches Modell auf der Basis von Simplexen}, doi = {10.25643/bauhaus-universitaet.461}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4616}, year = {1997}, abstract = {Die geometrische Modellierung hat in den Ingenieurwissenschaften eine große Bedeutung erlangt. Die Visualisierung von zwei- oder dreidimensionalen Problemstellungen ist aus heutigen Anwendungen nicht mehr wegzudenken. Zunehmend r{\"u}cken Aufgabenstellungen aus dem Bereich der geometrischen Modellierung in den Vordergrund, die {\"u}ber die etablierten Dimensionen 1-3 hinausgehen und die nicht mehr rein geometrischer Natur sind. Hierzu z{\"a}hlen Aufgabenstellungen aus den Bereichen numerische Simulation, Parameteridentifikation und Strukturanalyse. Auf diese nicht-geometrischen Aufgabenstellungen sollen geometrische Verfahren, wie z.B. Triangulation, konvexe H{\"u}lle, geometrischer Schnitt und Interpolation angewendet werden. Hierzu werden diese Algorithmen, die alle auf der klassischen Geometrie des euklidischen Raumes beruhen, auf ihre {\"U}bertragbarkeit hin analysiert und {\"u}berarbeitet. Am Beispiel einer Parameteridentifikation wird eine systematische Vorgehensweise vorgestellt, die es erm{\"o}glicht, trotz weniger Versuchsrechnungen den Bereich der in Frage kommenden Parameter umfassend zu beschreiben. Dies erm{\"o}glicht ein besseres Verst{\"a}ndnis der Zusammenh{\"a}nge der Parameter untereinander. H{\"a}ufig existieren mehr als eine Parameterkombination, so daß diese eine Isolinie formen, die ihrerseits unendlich viele L{\"o}sungen des gestellten Problemes im Untersuchungsgebiet beschreibt.}, subject = {Parameteridentifikation}, language = {de} } @article{KrebsBrueck1997, author = {Krebs, F. and Br{\"u}ck, E.}, title = {3D-Computergrafik und -animation als Instrument der Visualisierung im Bereich Entwurf und Denkmalpflege}, doi = {10.25643/bauhaus-universitaet.523}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5235}, year = {1997}, abstract = {Seit mehreren Jahren wird im Fachbereich Gestaltung, Studiengang Innenarchitektur 3D-Computergrafik und -animation in Lehrveranstaltungen ausgebildet und in Projekt- und Diplomarbeiten als Darstellungsmedium angewandt. Eine besondere Herausforderung stellen dabei die 3D-Visualisierungen von historischen Geb{\"a}uden dar. Mit den beiden nachfolgenden Beispielen soll der Einsatz und die curricularen Verkn{\"u}pfung der CA-Technologie mit Studienarbeiten und Projekten zum Thema >Denkmalpflege< aufgezeigt werden. Rekonstruktion und Visualisierung des ehemaligen >Jagdschlosses Platte< bei Wiesbaden. Mit Unterst{\"u}tzung einer Kunsthistorikerin wurde in einer Studienarbeit das im Krieg zerst{\"o}rte ehemalige Jagdschloß im Computer nachgebildet. Neben der Darstellung des Geb{\"a}ude{\"a}ußeren und des zentralen Innenbereiches wurde eine Animation {\"u}ber die Triangulierung der klassizistischen Geometrie erstellt. Umnutzung historischer Bausubstanz am Beispiel der ehemaligen Klostersanlage >Schiffenberg< bei Gießen. Im Rahmen einer Projektarbeit wurden mehrer Konzepte entwickelt, Entw{\"u}rfe erstellt und mittels Computeranimationen {\"o}ffentlich pr{\"a}sentiert. In Kooperation mit dem Studiengang Fernsehtechnik (FH-Wiesbaden) wurde von zwei Studenten eine Videodokumentation {\"u}ber den gesamten Projektverlauf erstellt. Neben dem Aufzeigen der Arbeitsprozesse und dem Vorstellen des Lehrkonzeptes f{\"u}r die curriculare Einbindung der CA-Technologie werden aktuelle Studienergebnisse anhand von Videoprojektionen vorgestellt.}, subject = {Architektur}, language = {de} }