@article{LeNguyenXuanAskesetal., author = {Le, C.V. and Nguyen-Xuan, Hung and Askes, H. and Rabczuk, Timon and Nguyen-Thoi, T.}, title = {Computation of limit load using edge-based smoothed finite element method and second-order cone programming}, series = {International Journal of Computational Methods}, journal = {International Journal of Computational Methods}, abstract = {Computation of limit load using edge-based smoothed finite element method and second-order cone programming}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSilaniRabczuk, author = {Talebi, Hossein and Silani, Mohammad and Rabczuk, Timon}, title = {Concurrent Multiscale Modelling of Three Dimensional Crack and Dislocation Propagation}, series = {Advances in Engineering Software}, journal = {Advances in Engineering Software}, pages = {82 -- 92}, abstract = {Concurrent Multiscale Modelling of Three Dimensional Crack and Dislocation Propagation}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoLuZhangetal., author = {Zhao, Jun-Hua and Lu, Lixin and Zhang, Zhiliang and Guo, Wanlin and Rabczuk, Timon}, title = {Continuum modeling of the cohesive energy for the interfaces between _lms, spheres, coats and substrates}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {432 -- 438}, abstract = {Continuum modeling of the cohesive energy for the interfaces between _lms, spheres, coats and substrates}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukQueirosdeMeloetal., author = {Areias, Pedro and Rabczuk, Timon and Queiros de Melo, F. J. M. and Cesar de Sa, J.M.}, title = {Coulomb frictional contact by explicit projection in the cone for _nite displacement quasi-static problems}, series = {Computational Mechanics}, journal = {Computational Mechanics}, pages = {57 -- 72}, abstract = {Coulomb frictional contact by explicit projection in the cone for _nite displacement quasi-static problems}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerRabczuk, author = {Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Detection of flaws in piezoelectric structures using extended FEM}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, pages = {373 -- 389}, abstract = {Detection of flaws in piezoelectric structures using extended FEM}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Zi, Goangseup and Rabczuk, Timon}, title = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, series = {Inverse Problems in Science and Engineering}, journal = {Inverse Problems in Science and Engineering}, pages = {153 -- 176}, abstract = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Zi, Goangseup and Rabczuk, Timon}, title = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, series = {Inverse Problems in Science and Engineering}, journal = {Inverse Problems in Science and Engineering}, abstract = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerRabczuk, author = {Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, pages = {960}, abstract = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerRabczuk, author = {Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {98 -- 112}, abstract = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, subject = {Angewandte Mathematik}, language = {en} } @article{KhosravaniRabczuk, author = {Khosravani, M.R. and Rabczuk, Timon}, title = {Determiniation of shear modulus for double and multi-walled Carbon Nanotubes}, series = {Mechanics of Composite Materials}, journal = {Mechanics of Composite Materials}, abstract = {Determiniation of shear modulus for double and multi-walled Carbon Nanotubes}, subject = {Angewandte Mathematik}, language = {en} } @article{BudarapuNarayanaRammohanetal., author = {Budarapu, Pattabhi Ramaiah and Narayana, T.S.S. and Rammohan, B. and Rabczuk, Timon}, title = {Directionality of sound radiation from rectangular panels}, series = {Applied Acoustics}, journal = {Applied Acoustics}, pages = {128 -- 140}, abstract = {Directionality of sound radiation from rectangular panels}, subject = {Angewandte Mathematik}, language = {en} } @article{ChakrabortyAnitescuZhuangetal., author = {Chakraborty, Ayan and Anitescu, Cosmin and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Domain adaptation based transfer learning approach for solving PDEs on complex geometries}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, doi = {10.1007/s00366-022-01661-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220811-46776}, pages = {1 -- 20}, abstract = {In machine learning, if the training data is independently and identically distributed as the test data then a trained model can make an accurate predictions for new samples of data. Conventional machine learning has a strong dependence on massive amounts of training data which are domain specific to understand their latent patterns. In contrast, Domain adaptation and Transfer learning methods are sub-fields within machine learning that are concerned with solving the inescapable problem of insufficient training data by relaxing the domain dependence hypothesis. In this contribution, this issue has been addressed and by making a novel combination of both the methods we develop a computationally efficient and practical algorithm to solve boundary value problems based on nonlinear partial differential equations. We adopt a meshfree analysis framework to integrate the prevailing geometric modelling techniques based on NURBS and present an enhanced deep collocation approach that also plays an important role in the accuracy of solutions. We start with a brief introduction on how these methods expand upon this framework. We observe an excellent agreement between these methods and have shown that how fine-tuning a pre-trained network to a specialized domain may lead to an outstanding performance compare to the existing ones. As proof of concept, we illustrate the performance of our proposed model on several benchmark problems.}, subject = {Maschinelles Lernen}, language = {en} } @article{RabczukZhuangOterkus, author = {Rabczuk, Timon and Zhuang, Xiaoying and Oterkus, Erkan}, title = {Editorial: Computational modeling based on nonlocal theory}, series = {Engineering with Computers}, volume = {2023}, journal = {Engineering with Computers}, number = {Volume 39, issue 3}, publisher = {Springer}, address = {London}, doi = {https://doi.org/10.1007/s00366-022-01775-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63658}, pages = {1}, abstract = {Nonlocal theories concern the interaction of objects, which are separated in space. Classical examples are Coulomb's law or Newton's law of universal gravitation. They had signficiant impact in physics and engineering. One classical application in mechanics is the failure of quasi-brittle materials. While local models lead to an ill-posed boundary value problem and associated mesh dependent results, nonlocal models guarantee the well-posedness and are furthermore relatively easy to implement into commercial computational software.}, subject = {Computersimulation}, language = {en} } @article{ZhangZhaoWeietal., author = {Zhang, Yancheng and Zhao, Jiyun and Wei, Ning and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {1714 -- 1721}, abstract = {Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTs) on nanoengineering load transfer}, subject = {Angewandte Mathematik}, language = {en} } @article{BudarapuGracieYangetal., author = {Budarapu, Pattabhi Ramaiah and Gracie, Robert and Yang, Shih-Wei and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Efficient Coarse Graining in Multiscale Modeling of Fracture}, series = {Theoretical and Applied Fracture Mechanics}, journal = {Theoretical and Applied Fracture Mechanics}, pages = {126 -- 143}, abstract = {Efficient Coarse Graining in Multiscale Modeling of Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangParkRabczuk, author = {Jiang, Jin-Wu and Park, Harold S. and Rabczuk, Timon}, title = {Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism}, subject = {Angewandte Mathematik}, language = {en} } @article{AmaniBagherzadehRabczuk, author = {Amani, Jafar and Bagherzadeh, Amir Saboor and Rabczuk, Timon}, title = {Error estimate and adaptive refinement in Mixed Discrete Least Squares Meshless method}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, abstract = {Error estimate and adaptive refinement in Mixed Discrete Least Squares Meshless method}, subject = {Angewandte Mathematik}, language = {en} } @article{AmaniSaboorBagherzadehRabczuk, author = {Amani, Jafar and Saboor Bagherzadeh, Amir and Rabczuk, Timon}, title = {Error estimate and adaptive refinement in mixed discrete least squares meshless method}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, doi = {10.1155/2014/721240}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170413-31181}, abstract = {The node moving and multistage node enrichment adaptive refinement procedures are extended in mixed discrete least squares meshless (MDLSM) method for efficient analysis of elasticity problems. In the formulation of MDLSM method, mixed formulation is accepted to avoid second-order differentiation of shape functions and to obtain displacements and stresses simultaneously. In the refinement procedures, a robust error estimator based on the value of the least square residuals functional of the governing differential equations and its boundaries at nodal points is used which is inherently available from the MDLSM formulation and can efficiently identify the zones with higher numerical errors. The results are compared with the refinement procedures in the irreducible formulation of discrete least squares meshless (DLSM) method and show the accuracy and efficiency of the proposed procedures. Also, the comparison of the error norms and convergence rate show the fidelity of the proposed adaptive refinement procedures in the MDLSM method.}, subject = {Elastizit{\"a}t}, language = {en} } @article{ChenNguyenThanhNguyenXuanetal., author = {Chen, Lei and Nguyen-Thanh, Nhon and Nguyen-Xuan, Hung and Rabczuk, Timon and Bordas, St{\´e}phane Pierre Alain and Limbert, Georges}, title = {Explicit finite deformation analysis of isogeometric membranes}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {104 -- 130}, abstract = {Explicit finite deformation analysis of isogeometric membranes}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenVinhBakarMsekhetal., author = {Nguyen-Vinh, H. and Bakar, I. and Msekh, Mohammed Abdulrazzak and Song, Jeong-Hoon and Muthu, Jacob and Zi, Goangseup and Le, P. and Bordas, St{\´e}phane Pierre Alain and Simpson, R. and Natarajan, S. and Lahmer, Tom and Rabczuk, Timon}, title = {Extended Finite Element Method for Dynamic Fracture of Piezo-Electric Materials}, series = {Engineering Fracture Mechanics}, journal = {Engineering Fracture Mechanics}, doi = {10.1016/j.engfracmech.2012.04.025}, pages = {19 -- 31}, abstract = {We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement.}, subject = {Angewandte Mathematik}, language = {en} } @article{ChenRabczukLiuetal., author = {Chen, Lei and Rabczuk, Timon and Liu, G.R. and Zeng, K.Y. and Kerfriden, Pierre and Bordas, St{\´e}phane Pierre Alain}, title = {Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, doi = {10.1016/j.cma.2011.08.013}, abstract = {This paper presents a strain smoothing procedure for the extended finite element method (XFEM). The resulting "edge-based" smoothed extended finite element method (ESm-XFEM) is tailored to linear elastic fracture mechanics and, in this context, to outperform the standard XFEM. In the XFEM, the displacement-based approximation is enriched by the Heaviside and asymptotic crack tip functions using the framework of partition of unity. This eliminates the need for the mesh alignment with the crack and re-meshing, as the crack evolves. Edge-based smoothing (ES) relies on a generalized smoothing operation over smoothing domains associated with edges of simplex meshes, and produces a softening effect leading to a close-to-exact stiffness, "super-convergence" and "ultra-accurate" solutions. The present method takes advantage of both the ES-FEM and the XFEM. Thanks to the use of strain smoothing, the subdivision of elements intersected by discontinuities and of integrating the (singular) derivatives of the approximation functions is suppressed via transforming interior integration into boundary integration. Numerical examples show that the proposed method improves significantly the accuracy of stress intensity factors and achieves a near optimal convergence rate in the energy norm even without geometrical enrichment or blending correction.}, subject = {Angewandte Mathematik}, language = {en} } @article{JiaAnitescuGhorashietal., author = {Jia, Yue and Anitescu, Cosmin and Ghorashi, Seyed Shahram and Rabczuk, Timon and Dias-da-Costa, D.}, title = {Extended Isogeometric Analysis for Material Interface Problems}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, abstract = {Extended Isogeometric Analysis for Material Interface Problems}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukCamanho, author = {Areias, Pedro and Rabczuk, Timon and Camanho, P.P.}, title = {Finite strain fracture of 2D problems with injected anisotropic softening elements}, series = {Theoretical and Applied Fracture Mechanics}, journal = {Theoretical and Applied Fracture Mechanics}, abstract = {Finite strain fracture of 2D problems with injected anisotropic softening elements}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczuk, author = {Areias, Pedro and Rabczuk, Timon}, title = {Finite strain fracture of plates and shells with configurational forces and edge rotation}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, abstract = {Finite strain fracture of plates and shells with configurational forces and edge rotation}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukCesardeSaetal., author = {Areias, Pedro and Rabczuk, Timon and Cesar de Sa, J.M. and Garcao, J.E.}, title = {Finite strain quadrilateral shell using least-squares _t of relative Lagrangian in-plane strains}, series = {Finite Elements in Analysis and Design}, journal = {Finite Elements in Analysis and Design}, pages = {26 -- 40}, abstract = {Finite strain quadrilateral shell using least-squares _t of relative Lagrangian in-plane strains}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThoiPhungVanRabczuketal., author = {Nguyen-Thoi, T. and Phung-Van, P. and Rabczuk, Timon and Nguyen-Xuan, Hung and Le-Van, C.}, title = {Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM)}, series = {International Journal of Computational Methods}, journal = {International Journal of Computational Methods}, abstract = {Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM)}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThoiRabczukLamPhatetal., author = {Nguyen-Thoi, T. and Rabczuk, Timon and Lam-Phat, T. and Ho-Huu, V. and Phung-Van, P.}, title = {Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3)}, series = {Theoretical and Applied Fracture Mechanics}, journal = {Theoretical and Applied Fracture Mechanics}, abstract = {Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3)}, subject = {Angewandte Mathematik}, language = {en} } @article{XuMourrainGalligoetal., author = {Xu, G. and Mourrain, B. and Galligo, A. and Rabczuk, Timon}, title = {High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods}, series = {Computational Mechanics}, journal = {Computational Mechanics}, abstract = {High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukDiasdaCostaetal., author = {Areias, Pedro and Rabczuk, Timon and Dias-da-Costa, D. and Piresh, E.B.}, title = {Implicit solutions with consistent additive and multiplicative components}, series = {Finite Elements in Analysis and Design}, journal = {Finite Elements in Analysis and Design}, doi = {10.1016/j.finel.2012.03.007}, pages = {15 -- 31}, abstract = {This work describes an algorithm and corresponding software for incorporating general nonlinear multiple-point equality constraints in a implicit sparse direct solver. It is shown that direct addressing of sparse matrices is possible in general circumstances, circumventing the traditional linear or binary search for introducing (generalized) constituents to a sparse matrix. Nested and arbitrarily interconnected multiple-point constraints are introduced by processing of multiplicative constituents with a built-in topological ordering of the resulting directed graph. A classification of discretization methods is performed and some re-classified problems are described and solved under this proposed perspective. The dependence relations between solution methods, algorithms and constituents becomes apparent. Fracture algorithms can be naturally casted in this framework. Solutions based on control equations are also directly incorporated as equality constraints. We show that arbitrary constituents can be used as long as the resulting directed graph is acyclic. It is also shown that graph partitions and orderings should be performed in the innermost part of the algorithm, a fact with some peculiar consequences. The core of our implicit code is described, specifically new algorithms for direct access of sparse matrices (by means of the clique structure) and general constituent processing. It is demonstrated that the graph structure of the second derivatives of the equality constraints are cliques (or pseudo-elements) and are naturally included as such. A complete algorithm is presented which allows a complete automation of equality constraints, avoiding the need of pre-sorting. Verification applications in four distinct areas are shown: single and multiple rigid body dynamics, solution control and computational fracture.}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiKerfridenBordasetal., author = {Ghasemi, Hamid and Kerfriden, Pierre and Bordas, St{\´e}phane Pierre Alain and Muthu, Jacob and Zi, Goangseup and Rabczuk, Timon}, title = {Interfacial shear stress optimization in sandwich beams with polymeric core using nonuniform distribution of reinforcing ingredients}, series = {Composite Structures}, journal = {Composite Structures}, pages = {221 -- 230}, abstract = {Interfacial shear stress optimization in sandwich beams with polymeric core using nonuniform distribution of reinforcing ingredients}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiFerreiraBordasetal., author = {Thai, Chien H. and Ferreira, A.J.M. and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon and Nguyen-Xuan, Hung}, title = {Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory}, series = {European Journal of Mechanics}, journal = {European Journal of Mechanics}, pages = {89 -- 108}, abstract = {Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiNguyenXuanBordasetal., author = {Thai, Chien H. and Nguyen-Xuan, Hung and Bordas, St{\´e}phane Pierre Alain and Nguyen-Thanh, Nhon and Rabczuk, Timon}, title = {Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory}, series = {Mechanics of Advanced Materials and Structures}, journal = {Mechanics of Advanced Materials and Structures}, pages = {451 -- 469}, abstract = {Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenKerfridenBordasetal., author = {Nguyen, V.P. and Kerfriden, Pierre and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon}, title = {Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm}, series = {Computer-Aided Design}, journal = {Computer-Aided Design}, abstract = {Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThanhNguyenXuanBordasetal., author = {Nguyen-Thanh, Nhon and Nguyen-Xuan, Hung and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon}, title = {Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {1892 -- 1908}, abstract = {Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhuangMuthuetal., author = {Zhang, Yancheng and Zhuang, Xiaoying and Muthu, Jacob and Mabrouki, Tarek and Fontaine, Micha{\"e}l and Gong, Yadong and Rabczuk, Timon}, title = {Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {27 -- 33}, abstract = {Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangRabczuk, author = {Jiang, Jin-Wu and Rabczuk, Timon}, title = {Mechanical Oscillation of Kinked Silicon Nanowires: a Natural Nanoscale Spring}, series = {Applied Physics Letters}, journal = {Applied Physics Letters}, abstract = {Mechanical Oscillation of Kinked Silicon Nanowires: a Natural Nanoscale Spring}, subject = {Angewandte Mathematik}, language = {en} } @article{MortazaviCunibertiRabczuk, author = {Mortazavi, Bohayra and Cuniberti, G. and Rabczuk, Timon}, title = {Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {285 -- 289}, abstract = {Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoWeiFanetal., author = {Zhao, Jun-Hua and Wei, Ning and Fan, Z. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Mechanical properties of three types of carbon allotropes}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Mechanical properties of three types of carbon allotropes}, subject = {Angewandte Mathematik}, language = {en} } @article{KumarSinghMishraetal., author = {Kumar, S. and Singh, I. and Mishra, B.K. and Rabczuk, Timon}, title = {Modeling and Simulation of Kinked Cracks by Virtual Node XFEM}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {1425 -- 1466}, abstract = {Modeling and Simulation of Kinked Cracks by Virtual Node XFEM}, subject = {Angewandte Mathematik}, language = {en} } @article{MortazaviPereiraJiangetal., author = {Mortazavi, Bohayra and Pereira, Luiz Felipe C. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Modelling heat conduction in polycrystalline hexagonal boron-nitride films}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep13228}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170425-31534}, abstract = {We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} } @article{JiangRabczuk, author = {Jiang, Jin-Wu and Rabczuk, Timon}, title = {Modulation of Thermal Conductivity in kinked Silicon Nanowires: Phonon interchanging and pinching effects or Reduction of thermal conductivity in kinked silicon nanowire superlattices}, series = {Nano Letters}, journal = {Nano Letters}, abstract = {Modulation of Thermal Conductivity in kinked Silicon Nanowires: Phonon interchanging and pinching effects or Reduction of thermal conductivity in kinked silicon nanowire superlattices}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSilaniBordasetal., author = {Talebi, Hossein and Silani, Mohammad and Bordas, St{\´e}phane Pierre Alain and Kerfriden, Pierre and Rabczuk, Timon}, title = {Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture}, series = {International Journal for Multiscale Computational Engineering}, journal = {International Journal for Multiscale Computational Engineering}, abstract = {Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangParkRabczuk, author = {Jiang, Jin-Wu and Park, Harold S. and Rabczuk, Timon}, title = {MoS2 nanoresonators: intrinsically better than graphene?}, series = {Nanoscale}, journal = {Nanoscale}, pages = {3618 -- 3625}, abstract = {MoS2 nanoresonators: intrinsically better than graphene?}, subject = {Angewandte Mathematik}, language = {en} } @article{IlyaniAkmarKramerRabczuk, author = {Ilyani Akmar, A.B. and Kramer, O. and Rabczuk, Timon}, title = {Multi-objective evolutionary optimization of sandwich structures: An evaluation by elitist non-dominated sorting evolution strategy}, series = {American Journal of Engineering and Applied Sciences}, journal = {American Journal of Engineering and Applied Sciences}, doi = {10.3844/ajeassp.2015.185.201}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31402}, pages = {185 -- 201}, abstract = {In this study, an application of evolutionary multi-objective optimization algorithms on the optimization of sandwich structures is presented. The solution strategy is known as Elitist Non-Dominated Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems a compatible approach to resolve multi-objective optimization problems because it is inspired by natural evolution, which closely linked to Artificial Intelligence (AI) techniques and elitism has shown an important factor for improving evolutionary multi-objective search. In order to evaluate the notion of performance by ENSES, the well-known study case of sandwich structures are reconsidered. For Case 1, the goals of the multi-objective optimization are minimization of the deflection and the weight of the sandwich structures. The length, the core and skin thicknesses are the design variables of Case 1. For Case 2, the objective functions are the fabrication cost, the beam weight and the end deflection of the sandwich structures. There are four design variables i.e., the weld height, the weld length, the beam depth and the beam width in Case 2. Numerical results are presented in terms of Paretooptimal solutions for both evaluated cases.}, subject = {Optimierung}, language = {en} } @article{ZhangNanthakumarLahmeretal., author = {Zhang, Chao and Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Multiple cracks identification for piezoelectric structures}, series = {International Journal of Fracture}, journal = {International Journal of Fracture}, pages = {1 -- 19}, abstract = {Multiple cracks identification for piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{MortazaviRabczuk, author = {Mortazavi, Bohayra and Rabczuk, Timon}, title = {Multiscale modeling of heat conduction in graphene laminates}, series = {Carbon}, journal = {Carbon}, pages = {1 -- 7}, abstract = {Multiscale modeling of heat conduction in graphene laminates}, subject = {Angewandte Mathematik}, language = {en} } @article{NooriMortazaviKeshtkarietal., author = {Noori, Hamidreza and Mortazavi, Bohayra and Keshtkari, Leila and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Nanopore creation in MoS2 and graphene monolayers by nanoparticles impact: a reactive molecular dynamics study}, series = {Applied Physics A}, volume = {2021}, journal = {Applied Physics A}, number = {volume 127, article 541}, publisher = {Springer}, address = {Heidelberg}, doi = {10.1007/s00339-021-04693-5}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210804-44756}, pages = {1 -- 13}, abstract = {In this work, extensive reactive molecular dynamics simulations are conducted to analyze the nanopore creation by nano-particles impact over single-layer molybdenum disulfide (MoS2) with 1T and 2H phases. We also compare the results with graphene monolayer. In our simulations, nanosheets are exposed to a spherical rigid carbon projectile with high initial velocities ranging from 2 to 23 km/s. Results for three different structures are compared to examine the most critical factors in the perforation and resistance force during the impact. To analyze the perforation and impact resistance, kinetic energy and displacement time history of the projectile as well as perforation resistance force of the projectile are investigated. Interestingly, although the elasticity module and tensile strength of the graphene are by almost five times higher than those of MoS2, the results demonstrate that 1T and 2H-MoS2 phases are more resistive to the impact loading and perforation than graphene. For the MoS2nanosheets, we realize that the 2H phase is more resistant to impact loading than the 1T counterpart. Our reactive molecular dynamics results highlight that in addition to the strength and toughness, atomic structure is another crucial factor that can contribute substantially to impact resistance of 2D materials. The obtained results can be useful to guide the experimental setups for the nanopore creation in MoS2or other 2D lattices.}, subject = {Nanomechanik}, language = {en} } @article{ArashRabczukJiang, author = {Arash, Behrouz and Rabczuk, Timon and Jiang, Jin-Wu}, title = {Nanoresonators and their applications: a state of the art review}, series = {Applied Physics Reviews}, journal = {Applied Physics Reviews}, abstract = {Nanoresonators and their applications: a state of the art review}, subject = {Angewandte Mathematik}, language = {en} } @article{RenZhuangOterkusetal., author = {Ren, Huilong and Zhuang, Xiaoying and Oterkus, Erkan and Zhu, Hehua and Rabczuk, Timon}, title = {Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method}, series = {Engineering with Computers}, volume = {2021}, journal = {Engineering with Computers}, doi = {10.1007/s00366-021-01502-8}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45388}, pages = {1 -- 22}, abstract = {The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate.}, subject = {Bruchmechanik}, language = {en} } @article{ValizadehNatarajanGonzalezEstradaetal., author = {Valizadeh, Navid and Natarajan, S. and Gonzalez-Estrada, O.A. and Rabczuk, Timon and Tinh Quoc, Bui and Bordas, St{\´e}phane Pierre Alain}, title = {NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter}, series = {Composite Structures}, journal = {Composite Structures}, pages = {309 -- 326}, abstract = {NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter}, subject = {Angewandte Mathematik}, language = {en} }