@inproceedings{LeipoldSchwarz, author = {Leipold, Mathias and Schwarz, Jochen}, title = {MODELING TECHNIQUES FOR RC-FRAME SYSTEMS WITH INFILLS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2868}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28684}, pages = {16}, abstract = {There are many different approaches to simulate the mechanical behavior of RC-Frames with masonry infills. In this paper, selected modeling techniques for masonry infills and reinforced concrete frame members will be discussed - stressing the attention on the damaging effects of the individual members and the entire system under quasi-static horizontal loading. The effect of the infill walls on the surrounding frame members is studied using equivalent strut elements. The implemented model consider in-plane failure modes for the infills, such as bed joint sliding and corner crushing. These frame member models differ with respect to their stress state. Finally, examples are provided and compared with experimental data from a real size test executed on a three story RC-Frame with and without infills. The quality of the model is evaluated on the basis of load-displacement relationships as well as damage progression.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KeitelDimmigOsburgZabel, author = {Keitel, Holger and Dimmig-Osburg, Andrea and Zabel, Volkmar}, title = {CHARACTERIZATION OF TIME-DEPENDENT DEFORMATIONS OF POLYMER CEMENT CONCRETE (PCC)}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2855}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28552}, pages = {17}, abstract = {Tests on Polymer Modified Cement Concrete (PCC) have shown significant large creep deformation. The reasons for that as well as additional material phenomena are explained in the following paper. Existing creep models developed for standard concrete are studied to determine the time-dependent deformations of PCC. These models are: model B3 by Bažant and Bajewa, the models according to Model Code 90 and ACI 209 as well as model GL2000 by Gardner and Lockman. The calculated creep strains are compared to existing experimental data of PCC and the differences are pointed out. Furthermore, an optimization of the model parameters is performed to fit the models to the experimental data to achieve a better model prognosis.}, subject = {Angewandte Informatik}, language = {en} }