@article{ZhangRen, author = {Zhang, Yongzheng and Ren, Huilong}, title = {Implicit implementation of the nonlocal operator method: an open source code}, series = {Engineering with computers}, volume = {2022}, journal = {Engineering with computers}, publisher = {Springer}, address = {London}, doi = {10.1007/s00366-021-01537-x}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220216-45930}, pages = {1 -- 35}, abstract = {In this paper, we present an open-source code for the first-order and higher-order nonlocal operator method (NOM) including a detailed description of the implementation. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combined with the method of weighed residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. The implementation in this paper is focused on linear elastic solids for sake of conciseness through the NOM can handle more complex nonlinear problems. The NOM can be very flexible and efficient to solve partial differential equations (PDEs), it's also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Finally, we present some classical benchmark problems including the classical cantilever beam and plate-with-a-hole problem, and we also make an extension of this method to solve complicated problems including phase-field fracture modeling and gradient elasticity material.}, subject = {Strukturmechanik}, language = {en} } @article{ReichertOlneyLahmer, author = {Reichert, Ina and Olney, Peter and Lahmer, Tom}, title = {Combined approach for optimal sensor placement and experimental verification in the context of tower-like structures}, series = {Journal of Civil Structural Health Monitoring}, volume = {2021}, journal = {Journal of Civil Structural Health Monitoring}, number = {volume 11}, publisher = {Heidelberg}, address = {Springer}, doi = {10.1007/s13349-020-00448-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210804-44701}, pages = {223 -- 234}, abstract = {When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures' models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain random/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that leads to a good estimate of the structure's behavior and model parameters without the need of preliminary measurements for model updating.}, subject = {Strukturmechanik}, language = {en} } @phdthesis{Schemmann, author = {Schemmann, Christoph}, title = {Optimierung von radialen Verdichterlaufr{\"a}dern unter Ber{\"u}cksichtigung empirischer und analytischer Vorinformationen mittels eines mehrstufigen Sampling Verfahrens}, doi = {10.25643/bauhaus-universitaet.3974}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190910-39748}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {233}, abstract = {Turbomachinery plays an important role in many cases of energy generation or conversion. Therefore, turbomachinery is a promising approaching point for optimization in order to increase the efficiency of energy use. In recent years, the use of automated optimization strategies in combination with numerical simulation has become increasingly popular in many fields of engineering. The complex interactions between fluid and solid mechanics encountered in turbomachines on the one hand and the high computational expense needed to calculate the performance on the other hand, have, however, prevented a widespread use of these techniques in this field of engineering. The objective of this work was the development of a strategy for efficient metamodel based optimization of centrifugal compressor impellers. In this context, the main focus is the reduction of the required numerical expense. The central idea followed in this research was the incorporation of preliminary information acquired from low-fidelity computation methods and empirical correlations into the sampling process to identify promising regions of the parameter space. This information was then used to concentrate the numerically expensive high-fidelity computations of the fluid dynamic and structure mechanic performance of the impeller in these regions while still maintaining a good coverage of the whole parameter space. The development of the optimization strategy can be divided into three main tasks. Firstly, the available preliminary information had to be researched and rated. This research identified loss models based on one dimensional flow physics and empirical correlations as the best suited method to predict the aerodynamic performance. The loss models were calibrated using available performance data to obtain a high prediction quality. As no sufficiently exact models for the prediction of the mechanical loading of the impellercould be identified, a metamodel based on finite element computations was chosen for this estimation. The second task was the development of a sampling method which concentrates samples in regions of the parameter space where high quality designs are predicted by the preliminary information while maintaining a good overall coverage. As available methods like rejection sampling or Markov-chain Monte-Carlo methods did not meet the requirements in terms of sample distribution and input correlation, a new multi-fidelity sampling method called "Filtered Sampling"has been developed. The last task was the development of an automated computational workflow. This workflow encompasses geometry parametrization, geometry generation, grid generation and computation of the aerodynamic performance and the structure mechanic loading. Special emphasis was put into the development of a geometry parametrization strategy based on fluid mechanic considerations to prevent the generation of physically inexpedient designs. Finally, the optimization strategy, which utilizes the previously developed tools, was successfully employed to carry out three optimization tasks. The efficiency of the method was proven by the first and second testcase where an existing compressor design was optimized by the presented method. The results were comparable to optimizations which did not take preliminary information into account, while the required computational expense cloud be halved. In the third testcase, the method was applied to generate a new impeller design. In contrast to the previous examples, this optimization featuredlargervariationsoftheimpellerdesigns. Therefore, theapplicability of the method to parameter spaces with significantly varying designs could be proven, too.}, subject = {Simulation}, language = {en} } @phdthesis{Vollmering, author = {Vollmering, Max}, title = {Damage Localization of Mechanical Structures by Subspace Identification and Krein Space Based H-infinity Estimation}, doi = {10.25643/bauhaus-universitaet.3772}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180730-37728}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {205}, abstract = {This dissertation is devoted to the theoretical development and experimental laboratory verification of a new damage localization method: The state projection estimation error (SP2E). This method is based on the subspace identification of mechanical structures, Krein space based H-infinity estimation and oblique projections. To explain method SP2E, several theories are discussed and laboratory experiments have been conducted and analysed. A fundamental approach of structural dynamics is outlined first by explaining mechanical systems based on first principles. Following that, a fundamentally different approach, subspace identification, is comprehensively explained. While both theories, first principle and subspace identification based mechanical systems, may be seen as widespread methods, barely known and new techniques follow up. Therefore, the indefinite quadratic estimation theory is explained. Based on a Popov function approach, this leads to the Krein space based H-infinity theory. Subsequently, a new method for damage identification, namely SP2E, is proposed. Here, the introduction of a difference process, the analysis by its average process power and the application of oblique projections is discussed in depth. Finally, the new method is verified in laboratory experiments. Therefore, the identification of a laboratory structure at Leipzig University of Applied Sciences is elaborated. Then structural alterations are experimentally applied, which were localized by SP2E afterwards. In the end four experimental sensitivity studies are shown and discussed. For each measurement series the structural alteration was increased, which was successfully tracked by SP2E. The experimental results are plausible and in accordance with the developed theories. By repeating these experiments, the applicability of SP2E for damage localization is experimentally proven.}, subject = {Strukturmechanik}, language = {en} } @article{ZhangNanthakumarLahmeretal., author = {Zhang, Chao and Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Multiple cracks identification for piezoelectric structures}, series = {International Journal of Fracture}, journal = {International Journal of Fracture}, pages = {1 -- 19}, abstract = {Multiple cracks identification for piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenTuanKoenkeBettziecheetal., author = {Nguyen-Tuan, Long and K{\"o}nke, Carsten and Bettzieche, Volker and Lahmer, Tom}, title = {Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams}, series = {Computers \& Structures}, journal = {Computers \& Structures}, pages = {143 -- 154}, abstract = {Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams}, subject = {Angewandte Mathematik}, language = {en} } @article{AchenbachLahmerMorgenthal, author = {Achenbach, Marcus and Lahmer, Tom and Morgenthal, Guido}, title = {Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire - A Comparison of Methods}, series = {14th International Probabilistic Workshop}, journal = {14th International Probabilistic Workshop}, pages = {97 -- 106}, abstract = {Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire—A Comparison of Methods}, subject = {Angewandte Mathematik}, language = {en} } @article{GoebelLahmerOsburg, author = {G{\"o}bel, Luise and Lahmer, Tom and Osburg, Andrea}, title = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, series = {European Journal of Mechanics-A/Solids}, journal = {European Journal of Mechanics-A/Solids}, abstract = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, subject = {Angewandte Mathematik}, language = {en} } @article{AlaladeNguyenTuanWuttkeetal., author = {Alalade, Muyiwa and Nguyen-Tuan, Long and Wuttke, Frank and Lahmer, Tom}, title = {Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM}, series = {International Journal of Mechanics and Materials in Design}, journal = {International Journal of Mechanics and Materials in Design}, doi = {10.25643/bauhaus-universitaet.3596}, pages = {1 -- 19}, abstract = {Damage identification in gravity dams using dynamic coupled hydro-mechanical XFEM.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangWangLahmeretal., author = {Zhang, Chao and Wang, Cuixia and Lahmer, Tom and He, Pengfei and Rabczuk, Timon}, title = {A dynamic XFEM formulation for crack identification}, series = {International Journal of Mechanics and Materials in Design}, journal = {International Journal of Mechanics and Materials in Design}, pages = {427 -- 448}, abstract = {A dynamic XFEM formulation for crack identification}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenTuanLahmerDatchevaetal., author = {Nguyen-Tuan, Long and Lahmer, Tom and Datcheva, Maria and Stoimenova, Eugenia and Schanz, Tom}, title = {A novel parameter identification approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses}, series = {Computers and Geotechnics}, journal = {Computers and Geotechnics}, pages = {23 -- 32}, abstract = {A novel parameter identification approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerZhuangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhuang, Xiaoying and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, series = {Advances in Engineering Software}, journal = {Advances in Engineering Software}, pages = {19 -- 31}, abstract = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Park, Harold S. and Rabczuk, Timon}, title = {Topology optimization of piezoelectric nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, pages = {316 -- 335}, abstract = {Topology optimization of piezoelectric nanostructures}, subject = {Angewandte Mathematik}, language = {en} } @article{GhorashiLahmerBagherzadehetal., author = {Ghorashi, Seyed Shahram and Lahmer, Tom and Bagherzadeh, Amir Saboor and Zi, Goangseup and Rabczuk, Timon}, title = {A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials}, series = {Engineering Geology}, journal = {Engineering Geology}, abstract = {A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Zi, Goangseup and Rabczuk, Timon}, title = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, series = {Inverse Problems in Science and Engineering}, journal = {Inverse Problems in Science and Engineering}, pages = {153 -- 176}, abstract = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{LahmerBockHildebrandetal., author = {Lahmer, Tom and Bock, Sebastian and Hildebrand, J{\"o}rg and G{\"u}rlebeck, Klaus}, title = {Non-destructive identification of residual stresses in steel under thermal loadings}, series = {Inverse Problems in Science and Engineering}, journal = {Inverse Problems in Science and Engineering}, pages = {1 -- 17}, abstract = {Non-destructive identification of residual stresses in steel under thermal loadings}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenTuanLahmerDatchevaetal., author = {Nguyen-Tuan, Long and Lahmer, Tom and Datcheva, Maria and Schanz, Tom}, title = {Global and local sensitivity analyses for coupled thermo-hydro-mechanical problems}, series = {International Journal for Numerical and Analytical Methods in Geomechanics}, journal = {International Journal for Numerical and Analytical Methods in Geomechanics}, abstract = {Global and local sensitivity analyses for coupled thermo-hydro-mechanical problems}, subject = {Angewandte Mathematik}, language = {en} } @article{MarzbanLahmer, author = {Marzban, Samira and Lahmer, Tom}, title = {Conceptual implementation of the variance-based sensitivity analysis for the calculation of the first-order effects}, series = {Journal of Statistical Theory and Practice}, journal = {Journal of Statistical Theory and Practice}, pages = {589 -- 611}, abstract = {Conceptual implementation of the variance-based sensitivity analysis for the calculation of the first-order effects}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerRabczuk, author = {Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, pages = {960}, abstract = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, subject = {Angewandte Mathematik}, language = {en} } @article{LahmerNguyenTuanKoenkeetal., author = {Lahmer, Tom and Nguyen-Tuan, Long and K{\"o}nke, Carsten and Bettzieche, Volker}, title = {Thermo-hydro-mechanische 3-D-Simulation von Staumauern-Modellierung und Validierung}, series = {WASSERWIRTSCHAFT}, journal = {WASSERWIRTSCHAFT}, pages = {27 -- 30}, abstract = {Thermo-hydro-mechanische 3-D-Simulation von Staumauern-Modellierung und Validierung}, subject = {Angewandte Mathematik}, language = {de} }