@inproceedings{SchoenbergerHermann, author = {Sch{\"o}nberger, Karsten and Hermann, F.}, title = {COMPUTERGEST{\"U}TZTES PORTFOLIOMANAGEMENT - EIN PRAXISBEISPIEL}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3016}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30168}, pages = {10}, abstract = {Die Kommunale Wohnungsgesellschaft mbH Erfurt(KoWo) ist mit ihren rund 20.000 Wohnungen in der Landeshauptstadt das gr{\"o}ßte Wohnungsunternehmen in Th{\"u}ringen. Der Immobilienbestand ist heterogen in seinem technischen Zustand und im Bezug auf die unterschiedlichen Lagen der Objekte. Bedingt durch Leerst{\"a}nde und unterschiedliche Modernisierungsmaßnahmen und -st{\"a}nde unterscheidet sich die Wirtschaftlichkeit verschiedener Objekte deutlich. Ohne eine einheitliche Einwertung des Immobilienbestandes im Bezug auf die Objektattraktivit{\"a}t, die Standortqualit{\"a}t und die Objektwirtschaftlichkeit f{\"a}llt eine langfristige strategische Entwicklung des Immobilienportfolios schwer. {\"U}ber die Schritte der technischen Bestandserfassung, die Einwertung {\"u}ber ein Scorintmodell, die Abbildung in einem Portfoliomodell mit zugeh{\"o}riger Normstrategie bis hin zur Weiterverarbeitung der Daten in der 20-j{\"a}hrigen Instandsetzungsplanung wird praxisnah aufgezeigt, wie die Vorgehensweise bei der Einwertung des Immobilienportfolios ist.}, subject = {Architektur }, language = {de} } @inproceedings{Schiller, author = {Schiller, Christian}, title = {CONSTRAINED TRAFFIC DEMAND MODELS - SIMULTANEOUS DISTRIBUTION AND MODE CHOICE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3014}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30148}, pages = {16}, abstract = {Unconstrained models are very often found in the broad spectrum of different theories of traffic demand models. In these models there are none or only one-sided restrictions influencing the choice of the individual. However in the traffic demand different deciding dependencies of the traffic volume with regard to the specific conditions of the territory structure potentials exist. Kichhoff and Lohse introduced bi- and tri-linearly constrained models to show these dependencies. In principle, the dependencies are described as hard, elastic and open boundary sum criteria. In this article a model is formulated which gets away from these predefined boundary sum criteria and allows a free determination of minimal and maximal boundary sum criteria. The iterative solution algorithm is shown according to a FURNESS procedure at the same time. With the approach of freely selectable minimal and maximal boundary sum criteria the modeling transport planner gets the possibility to show the traffic event even better. Furthermore all common boundary sum criteria can be calculated with this model. Therewith the often necessary and sensible standard and special cases can also be modeled.}, subject = {Architektur }, language = {en} } @inproceedings{BeranDlask, author = {Beran, V{\´a}clav and Dlask, Petr}, title = {CONSTRUCTION SPEED AND CASH FLOW OPTIMISATION}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2926}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29269}, pages = {10}, abstract = {Practical examples show that the improvement in cost flow and total amount of money spend in construction and further use may be cut significantly. The calculation is based on spreadsheets calculation, very easy to develop on most PC´s now a days. Construction works, are a field where the evaluation of Cash Flow can be and should be applied. Decisions about cash flow in construction are decisions with long-term impact and long-term memory. Mistakes from the distant past have a massive impact on situations in the present and into the far economic future of economic activities. Two approaches exist. The Just-in-Time (JIT) approach and life cycle costs (LCC) approach. The calculation example shows the dynamic results for the production speed in opposition to stable flow of production in duration of activities. More sophisticated rescheduling in optimal solution might bring in return extra profit. In the technologies and organizational processes for industrial buildings, railways and road reconstruction, public utilities and housing developments there are assembly procedures that are very appropriate for the given purpose, complicated research-, development-, innovation-projects are all very good aspects of these kinds of applications. The investors of large investments and all public invested money may be spent more efficiently if an optimisation speed-strategy can be calculated.}, subject = {Architektur }, language = {en} } @inproceedings{Kasparek, author = {Kasparek, Eva}, title = {CONVERGENCE OF A NEW CONSISTENT FOLDED PLATE THEORY}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2972}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29724}, pages = {10}, abstract = {The design of challenging space structures frequently relies on the theory of folded plates. The models are composed of plane facets of which the bending and membrane stiffness are coupled along the folds. In conventional finite element analysis of faceted structures the continuity of the displacement field is enforced exclusively at the nodes. Since approximate solutions for transverse and for in-plane displacements are not members of the same function space, separation occurs in between the common nodes of adjacent elements. It is shown that the kinematic assumptions of Bernoulli are accounted for this incompatibility along the edges in facet models. A general answer to this problem involves substantial modification of plate and membrane theory, but a straight forward formulation can be derived for simply folded plates, structures, whose folds do not intersect. A broad class of faceted structures, including models of various curved shells, belong to this category and can be calculated consistently. The additional requirements to assure continuity concern the mapping of displacement derivatives on the edges. An appropriate finite facet element provides node and edge-oriented degrees of freedom, whose transformation to system degrees of freedom, depends on the geometric configuration at each node. The concept is implemented using conform triangular elements. To evaluate the new approach, the energy norm of representative structures for refined meshes is calculated. The focus is placed on the mathematical convergence towards reliable solutions obtained from finite volume models.}, subject = {Architektur }, language = {en} } @inproceedings{HelbingKestingTreiberetal., author = {Helbing, D. and Kesting, A. and Treiber, M. and L{\"a}mmer, S. and Sch{\"o}nhof, M.}, title = {DECENTRALIZED APPROACHES TO ADAPTIVE TRAFFIC CONTROL AND AN EXTENDED LEVEL OF SERVICE CONCEPT}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2910}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29107}, pages = {19}, abstract = {Traffic systems are highly complex multi-component systems suffering from instabilities and non-linear dynamics, including chaos. This is caused by the non-linearity of interactions, delays, and fluctuations, which can trigger phenomena such as stop-and-go waves, noise-induced breakdowns, or slower-is-faster effects. The recently upcoming information and communication technologies (ICT) promise new solutions leading from the classical, centralized control to decentralized approaches in the sense of collective (swarm) intelligence and ad hoc networks. An interesting application field is adaptive, self-organized traffic control in urban road networks. We present control principles that allow one to reach a self-organized synchronization of traffic lights. Furthermore, vehicles will become automatic traffic state detection, data management, and communication centers when forming ad hoc networks through inter-vehicle communication (IVC). We discuss the mechanisms and the efficiency of message propagation on freeways by short-range communication. Our main focus is on future adaptive cruise control systems (ACC), which will not only increase the comfort and safety of car passengers, but also enhance the stability of traffic flows and the capacity of the road ("traffic assistance"). We present an automated driving strategy that adapts the operation mode of an ACC system to the autonomously detected, local traffic situation. The impact on the traffic dynamics is investigated by means of a multi-lane microscopic traffic simulation. The simulation scenarios illustrate the efficiency of the proposed driving strategy. Already an ACC equipment level of 10\% improves the traffic flow quality and reduces the travel times for the drivers drastically due to delaying or preventing a breakdown of the traffic flow. For the evaluation of the resulting traffic quality, we have recently developed an extended level of service concept (ELOS). We demonstrate our concept on the basis of travel times as the most important variable for a user-oriented quality of service.}, subject = {Architektur }, language = {en} } @inproceedings{ZolotovAkimovSidorov, author = {Zolotov, Alexander B. and Akimov, Pavel and Sidorov, Vladimir}, title = {DISCRETE-CONTINUAL BOUNDARY ELEMENT METHODS OF ANALYSIS FOR TWO-DIMENSIONAL AND THREE-DIMENSIONAL STRUCTURES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3041}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30419}, pages = {22}, abstract = {The aim of this paper is to present so-called discrete-continual boundary element method (DCBEM) of structural analysis. Its field of application comprises buildings constructions, structures and also parts and components for the residential, commercial and un-inhabitant structures with invariability of physical and geometrical parameters in some dimensions. We should mention here in particular such objects as beams, thin-walled bars, strip foundations, plates, shells, deep beams, high-rise buildings, extensional buildings, pipelines, rails, dams and others. DCBEM comes under group of semianalytical methods. Semianalytical formulations are contemporary mathematical models which currently becoming available for realization due to substantial speed-up of computer productivity. DCBEM is based on the theory of the pseudodifferential boundary equations. Corresponding pseudodifferential operators are discretely approximated using Fourier analysis or wavelet analysis. The main DCBEM advantages against the other methods of the numerical analysis is a double reduction in dimension of the problem (discrete numerical division applied not to the full region of the interest but only to the boundary of the region cross section, as a matter of fact one is solving an one-dimensional problem with the finite step on the boundary area of the region), one has opportunities to carrying out very detailed analysis of the specific chosen zones, simplified initial data preparation, simplistic and adaptive algorithms. There are two methods to define and conduct DCBEM analysis developed - indirect (IDCBEM) and direct (DDCBEM), thus indirect like in boundary element method (BEM) applied and used little bit more than direct.}, subject = {Architektur }, language = {en} } @inproceedings{DeaconvanRooyen, author = {Deacon, Michael-John and van Rooyen, G.C.}, title = {DISTRIBUTED COLLABORATION: ENGINEERING PRACTICE REQUIREMENTS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2941}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29410}, pages = {8}, abstract = {Designing a structure follows a pattern of creating a structural design concept, executing a finite element analysis and developing a design model. A project was undertaken to create computer support for executing these tasks within a collaborative environment. This study focuses on developing a software architecture that integrates the various structural design aspects into a seamless functional collaboratory that satisfies engineering practice requirements. The collaboratory is to support both homogeneous collaboration i.e. between users operating on the same model and heterogeneous collaboration i.e. between users operating on different model types. Collaboration can take place synchronously or asynchronously, and the information exchange is done either at the granularity of objects or at the granularity of models. The objective is to determine from practicing engineers which configurations they regard as best and what features are essential for working in a collaborative environment. Based on the suggestions of these engineers a specification of a collaboration configuration that satisfies engineering practice requirements will be developed.}, subject = {Architektur }, language = {en} } @inproceedings{EygelaarvanRooyen, author = {Eygelaar, Anton and van Rooyen, G.C.}, title = {ENGINEERING PROCESS MODEL SPECIFICATION AND RESOURCE LEVELING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2952}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29529}, pages = {18}, abstract = {The use of process models in the analysis, optimization and simulation of processes has proven to be extremely beneficial in the instances where they could be applied appropriately. However, the Architecture/Engineering/Construction (AEC) industries present unique challenges that complicate the modeling of their processes. A simple Engineering process model, based on the specification of Tasks, Datasets, Persons and Tools, and certain relations between them, have been developed, and its advantages over conventional techniques have been illustrated. Graph theory is used as the mathematical foundation mapping Tasks, Datasets, Persons and Tools to vertices and the relations between them to edges forming a directed graph. The acceptance of process modeling in AEC industries not only depends on the results it can provide, but the ease at which these results can be attained. Specifying a complex AEC process model is a dynamic exercise that is characterized by many modifications over the process model's lifespan. This article looks at reducing specification complexity, reducing the probability for erroneous input and allowing consistent model modification. Furthermore, the problem of resource leveling is discussed. Engineering projects are often executed with limited resources and determining the impact of such restrictions on the sequence of Tasks is important. Resource Leveling concerns itself with these restrictions caused by limited resources. This article looks at using Task shifting strategies to find a near-optimal sequence of Tasks that guarantees consistent Dataset evolution while resolving resource restrictions.}, subject = {Architektur }, language = {en} } @inproceedings{Kisil, author = {Kisil, Vladimir}, title = {FILLMORE-SPRINGER-CNOPS CONSTRUCTION IMPLEMENTED IN GINAC}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2974}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29744}, pages = {103}, abstract = {This is an implementation of the Fillmore-Springer-Cnops construction (FSCc) based on the Clifford algebra capacities of the GiNaC computer algebra system. FSCc linearises the linear-fraction action of the Mobius group. This turns to be very useful in several theoretical and applied fields including engineering. The core of this realisation of FSCc is done for an arbitrary dimension, while a subclass for two dimensional cycles add some 2D-specific routines including a visualisation to PostScript files through the MetaPost or Asymptote software. This library is a backbone of many result published in, which serve as illustrations of its usage. It can be ported (with various level of required changes) to other CAS with Clifford algebras capabilities.}, subject = {Architektur }, language = {en} } @inproceedings{Faustino, author = {Faustino, Nelson}, title = {FISCHER DECOMPOSITION FOR DIFFERENCE DIRAC OPERATORS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2955}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29551}, pages = {10}, abstract = {We establish the basis of a discrete function theory starting with a Fischer decomposition for difference Dirac operators. Discrete versions of homogeneous polynomials, Euler and Gamma operators are obtained. As a consequence we obtain a Fischer decomposition for the discrete Laplacian. For the sake of simplicity we consider in the first part only Dirac operators which contain only forward or backward finite differences. Of course, these Dirac operators do not factorize the classic discrete Laplacian. Therefore, we will consider a different definition of a difference Dirac operator in the quaternionic case which do factorizes the discrete Laplacian.}, subject = {Architektur }, language = {en} } @inproceedings{Bilchuk, author = {Bilchuk, Irina}, title = {GEOMETRIC IDENTIFICATION OF OBJECTS IN CIVIL ENGINEERING APPLICATIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2927}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29274}, pages = {21}, abstract = {Objects for civil engineering applications can be identified with their reference in memory, their alpha-numeric name or their geometric location. Particularly in graphic user interfaces, it is common to identify objects geometrically by selection with the mouse. As the number of geometric objects in a graphic user interface grows, it becomes increasingly more important to treat the basic operations add, search and remove for geometric objects with great efficiency. Guttmann has proposed the Region-Tree (R-tree) for geometric identification in an environment which uses pages on disc as data structure. Minimal bounding rectangles are used to structure the data in such a way that neighborhood relations can be described effectively. The literature shows that the parameters which influence the efficiency of the R-trees have been studied extensively, but without conclusive results. The goal of the research which is reported in this paper is to determine reliably the parameters which significantly influence the efficiency of R-trees for geometric identification in technical drawings. In order to make this investigation conclusive, it must be performed with the best available software technology. Therefore an object-oriented software for the method is developed. This implementation is tested with technical drawings containing many thousands of geometric objects. These drawings are created automatically by a stochastic generator which is incorporated into a test bed consisting of an editor and a visualisor. This test bed is used to obtain statistics for the main factors which affect the efficiency of R-trees. The investigation shows that the following main factors which affect the efficiency can be identified reliably : number of geometric objects on the drawing the minimum und maximum number of children of a node of the tree the maximum width and height of the minimal bounding rectangles of the geometric objects relative to the size of the drawing.}, subject = {Architektur }, language = {en} } @inproceedings{BrackxDeSchepperDeSchepperetal., author = {Brackx, Fred and De Schepper, Hennie and De Schepper, Nele and Sommen, Frank}, title = {HERMITIAN CLIFFORD-HERMITE WAVELETS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2931}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29313}, pages = {13}, abstract = {The one-dimensional continuous wavelet transform is a successful tool for signal and image analysis, with applications in physics and engineering. Clifford analysis offers an appropriate framework for taking wavelets to higher dimension. In the usual orthogonal case Clifford analysis focusses on monogenic functions, i.e. null solutions of the rotation invariant vector valued Dirac operator ∂, defined in terms of an orthogonal basis for the quadratic space Rm underlying the construction of the Clifford algebra R0,m. An intrinsic feature of this function theory is that it encompasses all dimensions at once, as opposed to a tensorial approach with products of one-dimensional phenomena. This has allowed for a very specific construction of higher dimensional wavelets and the development of the corresponding theory, based on generalizations of classical orthogonal polynomials on the real line, such as the radial Clifford-Hermite polynomials introduced by Sommen. In this paper, we pass to the Hermitian Clifford setting, i.e. we let the same set of generators produce the complex Clifford algebra C2n (with even dimension), which we equip with a Hermitian conjugation and a Hermitian inner product. Hermitian Clifford analysis then focusses on the null solutions of two mutually conjugate Hermitian Dirac operators which are invariant under the action of the unitary group. In this setting we construct new Clifford-Hermite polynomials, starting in a natural way from a Rodrigues formula which now involves both Dirac operators mentioned. Due to the specific features of the Hermitian setting, four different types of polynomials are obtained, two types of even degree and two types of odd degree. These polynomials are used to introduce a new continuous wavelet transform, after thorough investigation of all necessary properties of the involved polynomials, the mother wavelet and the associated family of wavelet kernels.}, subject = {Architektur }, language = {en} } @inproceedings{Jahnke, author = {Jahnke, Georg}, title = {HISTORISCHE BAUSUBSTANZ IN MECKLENBURG}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2971}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29719}, pages = {11}, abstract = {Mit diesen Ausf{\"u}hrungen wird ein Beitrag zum weiteren Erhalt der historischen Bausubstanz in Mecklenburg aus der Sicht der Tragwerksanalyse geleistet. Dabei best{\"a}tigt es sich immer mehr, dass mit dem Modell der Geometrie, der Belastung und des Materials gleichberechtigte Modelle f{\"u}r eine wirklichkeitsnahe Einsch{\"a}tzung des Tragverhaltens eines Tragwerks vorliegen m{\"u}ssen. Es zeigt sich, dass dabei die besten Berechnungsprogramme nur die Ergebnisse liefern k{\"o}nnen, die mit den Eingabedaten zu erzielen sind. So hat sich der Forschungsschwerpunkt im Lehrgebiet Tragwerkslehre des FB Architektur an der Hochschule Wismar in den letzten Jahren auf die realistische Abbildung der Wechselwirkung zwischen der Bauaufnahme und der geometrischen Modellierung konzentriert. In diesem Bereich zeigen sich als Schwerpunkte die Wechselwirkung zwischen Sch{\"a}den und Tragwerksanalyse und die Wechselwirkung zwischen der aufgenommenen Geometrie und dem geometrischen Modell f{\"u}r die Tragwerksanalyse. Die F{\"u}lle der aufgenommenen Daten sind dabei in der Regel mehr hinderlich als ein Segen f{\"u}r die Tragwerksanalyse. Hier wurde gezeigt, welche und wie viele geometrische Daten f{\"u}r das geometrische Modell f{\"u}r die Tragwerksanalyse sinnvoll sind. Da die eigene Datenaufnahme relativ viel Zeit beansprucht, wurde eine "geistige" Bauaufnahme durchgef{\"u}hrt. Dazu wird der historische Planungsprozess in den einzelnen Formfindungsschritten nachvollzogen und in die virtuelle Realit{\"a}t {\"u}berf{\"u}hrt. Mit dieser Methode ergeben sich unterschiedliche Bauzust{\"a}nde und es lassen sich auch m{\"o}gliche Bauphasen abbilden. Die Tragwerksanalyse dieser virtuellen Realit{\"a}t zeigt dann m{\"o}gliche Schw{\"a}chen der Tragwerke und/oder die Notwendigkeit konstruktiver Ver{\"a}nderungen. Ein Vergleich der Ergebnisse der Tragwerksanalyse mit der Realit{\"a}t anhand des vorliegenden Datenbestands liefert die Grundlage f{\"u}r den aktuellen Handlungsbedarf. Da der Bauzustand eines Bauwerkes unter einer zeitlichen Ver{\"a}nderung steht, werden Methoden {\"u}berpr{\"u}ft, die es erm{\"o}glichen, einen einmal vorgelegten Datenbestand aufzubereiten und weiter zu verwalten.}, subject = {Architektur }, language = {de} } @inproceedings{Goettlicher, author = {G{\"o}ttlicher, Manfred}, title = {HYBRID SOLID-LIQUID MODEL FOR GRANULAR MATERIAL}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2959}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29596}, pages = {20}, abstract = {Solid behavior as well as liquid behavior characterizes the flow of granular material in silos. The presented model is based on an appropriate interaction of a displacement field and a velocity field. The constitutive equations and the applied algorithm are developed from the exact solution for a standard case. The standard case evolves from a very tall vertical plane strain silo containing material that flows at a constant speed. No horizontal displacements and velocities take place. No changes regarding the field values arise in the vertical direction and in time. Tension is not allowed at any point. Coulomb friction represents the effects of the vertical walls. The interaction between the flowing material and the walls is covered by a forced boundary condition resulting in an additional matrix for the solid component as well as for the liquid component. The resulting integral equations are designed to be solved directly. Three coefficients describe the properties of the granular material. They govern elastic solid behavior in combination with viscous liquid behavior.}, subject = {Architektur }, language = {de} } @inproceedings{ErikssonKettunen, author = {Eriksson, Sirkka-Liisa and Kettunen, Jarkko}, title = {HYPERMONOGENIC POLYNOMIALS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2950}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29509}, pages = {22}, abstract = {It is well know that the power function is not monogenic. There are basically two ways to include the power function into the set of solutions: The hypermonogenic functions or holomorphic Cliffordian functions. L. Pernas has found out the dimension of the space of homogenous holomorphic Cliffordian polynomials of degree m, but his approach did not include a basis. It is known that the hypermonogenic functions are included in the space of holomorphic Cliffordian functions. As our main result we show that we can construct a basis for the right module of homogeneous holomorphic Cliffordian polynomials of degree m using hypermonogenic polynomials and their derivatives. To that end we first recall the function spaces of monogenic, hypermonogenic and holomorphic Cliffordian functions and give the results needed in the proof of our main theorem. We list some basic polynomials and their properties for the various function spaces. In particular, we consider recursive formulas, rules of differentiation and properties of linear independency for the polynomials.}, subject = {Architektur }, language = {en} } @inproceedings{Ostrowski, author = {Ostrowski, M.}, title = {INTEGRATED MATHEMATICAL MODELLING AS A BASIS FOR DECISION MAKING IN WATER MANAGEMENT}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2997}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29979}, pages = {9}, abstract = {Water resources development and management is a complex problem. It includes the design and operation of single system components, often as part of larger interrelated systems and usually on the basis of river basins. While several decades ago the dominant objective was the maximization of economic benefit, other objectives have evolved as part of the sustainable development envisaged. Today, planning and operation of larger water resources systems is practically impossible without adequate computer tools, normally being one or several models, increasingly combined with data bank management systems and multi criteria assessment procedures in decision support systems. The use of models in civil engineering already has a long history when structural engineering is considered. These design support models, however, must rather be seen as expert systems made to support the engineer with his daily work. They often have no direct link to stakeholders and the decision makers community. The scale of investigation is often much larger in water resources engineering than in structural engineering which is related to different stakeholders and decision making procedures. Still, several similarities are obvious which can be summarized as the search for a compromise solution on a complex, i.e. multiobjective and interdisciplinary decision problem. While in structural engineering e.g. aestetics, stability and energy consumption might be important evaluation criteria in addition to construction and maintenance cost other or additional criteria have to be considered in water resources planning such as political, environmental and social criteria. In this respect civil engineers tend to overemphasize technical criteria. For the future the existing expert systems should be embedded into an improved decision support shell, keeping in mind that decision makers are hardly interested in numerical modelling results. The paper will introduce into the problem and demonstrate the state of the art by means of an example.}, subject = {Architektur }, language = {en} } @inproceedings{KlawitterOstrowski, author = {Klawitter, Arne and Ostrowski, M.}, title = {INTEGRATED RAINFALL RUNOFF MODELLING IN SMALL URBANIZED CATCHMENTS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2976}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29767}, pages = {12}, abstract = {A concept for integrated modeling of urban and rural hydrology is introduced. The concept allows for simulations on the catchment scale as well as on the local scale. It is based on a 2-layer-approach which facilitates the parallel coupling of a catchment hydrology model with an urban hydrology model, considering the interactions between the two systems. The concept has been implemented in a computer model combining a grid based distributed hydrological catchment model and a hydrological urban stormwater model based on elementary units. The combined model provides a flexible solution for time and spatial scale integration and offers to calculate separate water balances for urban and rural hydrology. Furthermore, it is GIS-based which allows for easy and accurate geo-referencing of urban overflow structures, which are considered as points of interactions between the two hydrologic systems. Due to the two-layer-approach, programs of measures can be incorporated in each system separately. The capabilities of the combined model have been tested on a hypothetical test case and a real world application. It could be shown that the model is capable of accurately quantifying the effects of urbanization in a catchment. The affects of urbanization can be analyzed at the catchment outlet, but can also be traced back to its origins, due to the geo-referencing of urban overflow structures. This is a mayor advantage over conventional hydrological catchment models for the analysis of land use changes.}, subject = {Architektur }, language = {en} } @inproceedings{SchererGrinewitschus, author = {Scherer, Klaus and Grinewitschus, Viktor}, title = {INTEGRIERTE SYSTEMBEDIENUNG IN GEB{\"A}UDEN: KOMPLEXE TECHNIK EINFACHER HANDHABEN}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3013}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30132}, pages = {7}, abstract = {R{\"a}ume und Geb{\"a}ude sind heute wegen der enormen Funktionalit{\"a}t der technischen Geb{\"a}udeausr{\"u}stung (TGA) in Kombination mit der sonstigen Ausstattung und den diversen Anwendungsprozessen und Nutzergruppen ohne innovative Konzepte der integrierten Bedienung kaum noch beherrschbar bzw. optimal nutzbar. Dies gilt sowohl f{\"u}r Wohn- als auch f{\"u}r Zweckimmobilien. Die Geb{\"a}udeleittechnik (GLT) und die Geb{\"a}udeautomation (GA) k{\"o}nnen hier unter sinnvoller Integration der M{\"o}glichkeiten der Mikroelektronik, Multimedia-, Kommunikations- und Informationstechnik erheblich zu nutzbringenden Innovationen beitragen. Die Automobilindustrie hat in den letzten Jahren gezeigt, wie durch einen integralen Systemansatz und durch Einsatz von Elektronik, Kommunikations- und Informationstechnik eine sinnvolle technische Assistenz der Anwender machbar ist. Genannt sei hier das Konzept des Cockpits mit integrierter Funktionsb{\"u}ndelung und der Informationskonzentration am Armaturenbrett. Im Gegensatz zum Automobil ist der Bereich der technischen Geb{\"a}udeausstattung in Wohn- und Nutzimmobilien gekennzeichnet durch eine starke Fragmentierung in unterschiedlichste Gewerke unter Beteiligung vieler oft schlecht koordinierter Akteure. Durch das Duisburger inHaus-Innovationszentrum f{\"u}r Intelligente Raum- und Geb{\"a}udesysteme der Fraunhofer-Gesellschaft wurden in den letzten Jahren neuartige Konzepte der Systemintegration heterogener Technik auf der Basis von Middleware-Plattformen und Multimedia-Technologien und -Ger{\"a}ten entwickelt, getestet und in die Anwendung getragen. Einer der ersten Systemanwendungen dieses offenen Infrastrukturkonzepts ist die integrierte Systembedienung mit zum Teil v{\"o}llig neuen Bedienkonzepten und einer starken Bedienungsvereinfachung auch komplexester Technikausr{\"u}stungen in Immobilien. Der Beitrag beschreibt nach einer Analyse der Ausgangslage die technologischen Grundz{\"u}ge der integrierten Systembedienung. Es folgen einige Anwendungsbeispiele und eine zusammenfassende Bewertung mit einem Ausblick auf weiterf{\"u}hrende Aktivit{\"a}ten.}, subject = {Architektur }, language = {de} } @inproceedings{KimuraMakinoMaegaitoetal., author = {Kimura, Atsushi and Makino, Y. and Maegaito, Kentaro and Suzuki, Osamu}, title = {ITERATION DYNAMICAL SYSTEMS OF DISCRETE LAPLACIANS ON THE PLANE LATTICE (II) (THE VISUAL IMPRESSIONS GIVEN BY DESIGN-PATTERNS)}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2973}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29731}, pages = {4}, abstract = {The present study was designed to investigate the underlying factors determining the visual impressions of design-patterns that have complex textures. Design-patterns produced by "the dynamical system defined by iterations of discrete Laplacians on the plane lattice" were adopted as stimuli because they were not only complex, but also defined mathematically. In the experiment, 21 graduate and undergraduate students sorted 102 design-patterns into several groups by visual impressions. Those 102 patterns were classified into 12 categories by the cluster analysis. The results showed that the regularity of pattern was a most efficient factor for determining visual impressions of design-pattern, and there were some correspondence between visual impressions and mathematical variables of design-pattern. Especially, the visual impressions were influenced greatly by the neighborhood, and less influenced by steps of iterations.}, subject = {Architektur }, language = {en} } @inproceedings{AibaMaegaitoSuzuki, author = {Aiba, Yoshihisa and Maegaito, Kentaro and Suzuki, Osamu}, title = {Iteration dynamical systems of discrete Laplacians on the plane lattice(I) (Basic properties and computer simulations of the dynamical systems)}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2917}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29178}, pages = {3}, abstract = {In this study we introduce a concept of discrete Laplacian on the plane lattice and consider its iteration dynamical system. At first we discuss some basic properties on the dynamical system to be proved. Next making their computer simulations, we show that we can realize the following phenomena quite well:(1) The crystal of waters (2) The designs of carpets, embroideries (3) The time change of the numbers of families of extinct animals, and (4) The echo systems of life things. Hence we may expect that we can understand the evolutions and self organizations by use of the dynamical systems. Here we want to make a stress on the following fact: Although several well known chaotic dynamical systems can describe chaotic phenomena, they have difficulties in the descriptions of the evolutions and self organizations.}, subject = {Architektur }, language = {en} }