@inproceedings{CruzFalcaoMalonek, author = {Cruz, J. F. and Falc{\~a}o, M. Irene and Malonek, Helmuth Robert}, title = {3D-MAPPINGS AND THEIR APPROXIMATION BY SERIES OF POWERS OF A SMALL PARAMETER}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2940}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29406}, pages = {14}, abstract = {In classical complex function theory the geometric mapping property of conformality is closely linked with complex differentiability. In contrast to the planar case, in higher dimensions the set of conformal mappings is only the set of M{\"o}bius transformations. Unfortunately, the theory of generalized holomorphic functions (by historical reasons they are called monogenic functions) developed on the basis of Clifford algebras does not cover the set of M{\"o}bius transformations in higher dimensions, since M{\"o}bius transformations are not monogenic. But on the other side, monogenic functions are hypercomplex differentiable functions and the question arises if from this point of view they can still play a special role for other types of 3D-mappings, for instance, for quasi-conformal ones. On the occasion of the 16th IKM 3D-mapping methods based on the application of Bergman's reproducing kernel approach (BKM) have been discussed. Almost all authors working before that with BKM in the Clifford setting were only concerned with the general algebraic and functional analytic background which allows the explicit determination of the kernel in special situations. The main goal of the abovementioned contribution was the numerical experiment by using a Maple software specially developed for that purpose. Since BKM is only one of a great variety of concrete numerical methods developed for mapping problems, our goal is to present a complete different from BKM approach to 3D-mappings. In fact, it is an extension of ideas of L. V. Kantorovich to the 3-dimensional case by using reduced quaternions and some suitable series of powers of a small parameter. Whereas until now in the Clifford case of BKM the recovering of the mapping function itself and its relation to the monogenic kernel function is still an open problem, this approach avoids such difficulties and leads to an approximation by monogenic polynomials depending on that small parameter.}, subject = {Architektur }, language = {en} } @inproceedings{BaitschHartmann, author = {Baitsch, Matthias and Hartmann, Dietrich}, title = {A FRAMEWORK FOR THE INTERACTIVE VISUALIZATION OF ENGINEERING MODELS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2919}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29194}, pages = {9}, abstract = {Interactive visualization based on 3D computer graphics nowadays is an indispensable part of any simulation software used in engineering. Nevertheless, the implementation of such visualization software components is often avoided in research projects because it is a challenging and potentially time consuming task. In this contribution, a novel Java framework for the interactive visualization of engineering models is introduced. It supports the task of implementing engineering visualization software by providing adequate program logic as well as high level classes for the visual representation of entities typical for engineering models. The presented framework is built on top of the open source visualization toolkit VTK. In VTK, a visualization model is established by connecting several filter objects in a so called visualization pipeline. Although designing and implementing a good pipeline layout is demanding, VTK does not support the reuse of pipeline layouts directly. Our framework tailors VTK to engineering applications on two levels. On the first level it adds new - engineering model specific - filter classes to VTK. On the second level, ready made pipeline layouts for certain aspects of engineering models are provided. For instance there is a pipeline class for one-dimensional elements like trusses and beams that is capable of showing the elements along with deformations and member forces. In order to facilitate the implementation of a graphical user interface (GUI) for each pipeline class, there exists a reusable Java Swing GUI component that allows the user to configure the appearance of the visualization model. Because of the flexible structure, the framework can be easily adapted and extended to new problem domains. Currently it is used in (i) an object-oriented p-version finite element code for design optimization, (ii) an agent based monitoring system for dam structures and (iii) the simulation of destruction processes by controlled explosives based on multibody dynamics. Application examples from all three domains illustrates that the approach presented is powerful as well as versatile.}, subject = {Architektur }, language = {en} } @inproceedings{BrackxDeKnockDeSchepper, author = {Brackx, Fred and De Knock, B. and De Schepper, Hennie}, title = {A MULTI--DIMENSIONAL HILBERT TRANSFORM IN ANISOTROPIC CLIFFORD ANALYSIS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2929}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29297}, pages = {15}, abstract = {In earlier research, generalized multidimensional Hilbert transforms have been constructed in m-dimensional Euclidean space, in the framework of Clifford analysis. Clifford analysis, centred around the notion of monogenic functions, may be regarded as a direct and elegant generalization to higher dimension of the theory of the holomorphic functions in the complex plane. The considered Hilbert transforms, usually obtained as a part of the boundary value of an associated Cauchy transform in m+1 dimensions, might be characterized as isotropic, since the metric in the underlying space is the standard Euclidean one. In this paper we adopt the idea of a so-called anisotropic Clifford setting, which leads to the introduction of a metric dependent m-dimensional Hilbert transform, showing, at least formally, the same properties as the isotropic one. The Hilbert transform being an important tool in signal analysis, this metric dependent setting has the advantage of allowing the adjustment of the co-ordinate system to possible preferential directions in the signals to be analyzed. A striking result to be mentioned is that the associated anisotropic (m+1)-dimensional Cauchy transform is no longer uniquely determined, but may stem from a diversity of (m+1)-dimensional "mother" metrics.}, subject = {Architektur }, language = {en} } @inproceedings{WallFoersterNeumannetal., author = {Wall, Wolfgang A. and F{\"o}rster, Christiane and Neumann, Malte and Ramm, Ekkehard}, title = {ADVANCES IN FLUID-STRUCTURE INTERACTION}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2916}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29161}, pages = {17}, abstract = {For the dynamic behavior of lightweight structures like thin shells and membranes exposed to fluid flow the interaction between the two fields is often essential. Computational fluid-structure interaction provides a tool to predict this interaction and complement or eventually replace expensive experiments. Partitioned analyses techniques enjoy great popularity for the numerical simulation of these interactions. This is due to their computational superiority over simultaneous, i.e. fully coupled monolithic approaches, as they allow the independent use of suitable discretization methods and modular analysis software. We use, for the fluid, GLS stabilized finite elements on a moving domain based on the incompressible instationary Navier-Stokes equations, where the formulation guarantees geometric conservation on the deforming domain. The structure is discretized by nonlinear, three-dimensional shell elements. Commonly used sequential staggered coupling schemes may exhibit instabilities due to the so-called artificial added mass effect. As best remedy to this problem subiterations should be invoked to guarantee kinematic and dynamic continuity across the fluid-structure interface. Since iterative coupling algorithms are computationally very costly, their convergence rate is very decisive for their usability. To ensure and accelerate the convergence of this iteration the updates of the interface position are relaxed. The time dependent, 'optimal' relaxation parameter is determined automatically without any user-input via exploiting a gradient method or applying an Aitken iteration scheme.}, subject = {Architektur }, language = {en} } @inproceedings{ZangSommer, author = {Zang, Di and Sommer, G.}, title = {ALGEBRAICALLY EXTENDED 2D IMAGE REPRESENTATION}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3039}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30396}, pages = {10}, abstract = {We present an algebraically extended 2D image representation in this paper. In order to obtain more degrees of freedom, a 2D image is embedded into a certain geometric algebra. Combining methods of differential geometry, tensor algebra, monogenic signal and quadrature filter, the novel 2D image representation can be derived as the monogenic extension of a curvature tensor. The 2D spherical harmonics are employed as basis functions to construct the algebraically extended 2D image representation. From this representation, the monogenic signal and the monogenic curvature signal for modeling intrinsically one and two dimensional (i1D/i2D) structures are obtained as special cases. Local features of amplitude, phase and orientation can be extracted at the same time in this unique framework. Compared with the related work, our approach has the advantage of simultaneous estimation of local phase and orientation. The main contribution is the rotationally invariant phase estimation, which enables phase-based processing in many computer vision tasks.}, subject = {Architektur }, language = {en} } @inproceedings{SchererGrinewitschus, author = {Scherer, Klaus and Grinewitschus, Viktor}, title = {AMBIENT INTELLIGENCE IN RAUM UND BAU INNOVATIVE TECHNIKASSISTENZ F{\"U}R FACILITY MANAGEMENT UND ANWENDUNG}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2914}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29140}, pages = {9}, abstract = {Mikroelektronik und Mikrosystemtechnik in Kombination mit Informations- und Kommunikations-technik erlauben es mittlerweile, Rechenleistung und Kommunikationsf{\"a}higkeit in kleinsten Formaten, mit geringsten Energien und zu g{\"u}nstigen Preisen nutzbringend in unser privates und berufliches Umfeld einzubringen. Beispiele sind Notebook-PC, PDA, Handy und das Navigationßystem im Auto. Aber auch eingebettete Elektronik in Komponenten, Ger{\"a}ten und Systemen ist nunmehr zur Selbstverst{\"a}ndlichkeit geworden. Bekannte Beispiele aus der Haustechnik sind Mikroprozeßoren in Heizungs- und Alarmanlagen und aber auch in Komponenten wie Brand- und Bewegungsmelder. Wir n{\"a}hern uns dem vor einigen Jahren noch als Vision bezeichneten Zustand der {\"u}berall vorhandenen elektronischen Rechenleistung (engl. ubiquitous computing) bzw. des von Informationsverarbeitung durchdrungenen t{\"a}glichen Umfelds (engl. pervasive computing). Werden die TGA-Komponenten genau wie die gr{\"o}ßeren Computerkomponenten (z.B. PCs, Server) {\"u}ber Datenschnittstellen zu r{\"a}umlich verteilten Netzwerken verkn{\"u}pft (z.B. Internet, Intranet) und mit einer system{\"u}bergreifenden und ad{\"a}quaten Intelligenz (Software) programmiert, so k{\"o}nnen neuartige Funktionalit{\"a}ten im jeweiligen Anwendungsumfeld (engl. ambient intelligence, kurz AmI, [1]) entstehen. Hier liegt bei Geb{\"a}uden und R{\"a}umen speziell eine große Chance, die bislang einer ganzheitlichen Systemkonzeption unter Einschluß von Architektur, Geb{\"a}udephysik, technischer Geb{\"a}udeausr{\"u}stung (TGA) und Geb{\"a}udeautomation (GA) im Wege stehende Gewerketrennung zu {\"u}berwinden. Es entstehen f{\"u}r div. Anwendungszwecke systemisch integrierte >smart areas< (nach Prof. Becker, FH Biberach). Im vorliegenden Beitrag erl{\"a}uterte Beispiele f{\"u}r AmI-L{\"o}sungen im Immobilienbereich sind Raumsysteme zur automatischen und sicheren Erkennung von Notf{\"a}llen, z.B. in Pflegeheimen; sich automatisch an die Nutzung und den Nutzer bzgl. Klima und Beleuchtung adaptierende Raumsysteme im B{\"u}ro- oder Hotelbereich und die elektronische Aßistenz des Bau- und Betriebsprozeßes von Geb{\"a}uden. Im Duisburger inHaus-Innovationszentrum f{\"u}r Intelligente Raum- und Geb{\"a}udesysteme der Fraunhofer-Gesellschaft wurden in den letzten Jahren erste L{\"o}sungen mit diesem neuartigen Ansatz konzipiert, entwickelt und erprobt. Der Beitrag beschreibt nach einer kurzen Skizzierung des Ambient-Intelligence-Ansatzes an Beispielen M{\"o}glichkeiten f{\"u}r den Transfer dieser neuen Technologie in den Raum- und Geb{\"a}udebereich. Es folgt eine abschließende Zusammenfaßung und eine Einsch{\"a}tzung der Zukunftspotenziale der Ambient Intelligence in Raum und Bau.}, subject = {Architektur }, language = {de} } @inproceedings{WoszczynaKaminskiMajetal., author = {Woszczyna, Anna and Kaminski, Mieczysław and Maj, Marek and Ubysz, Andrzej}, title = {ANALYSING THE INFLUENCE OF THE REINFORCED CONCRETE CHIMNEY GEOMETRY CHANGES ON THE STRESSES IN THE CHIMNEY SHAFT}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3038}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30388}, pages = {7}, abstract = {Analysis of the reinforced concrete chimney geometry changes and their influence on the stresses in the chimney mantle was made. All the changes were introduced to a model chimney and compared. Relations between the stresses in the mantle of the chimney and the deformations determined by the change of the chimney's vertical axis geometry were investigated. The vertical axis of chimney was described by linear function (corresponding to the real rotation of the chimney together with the foundation), and by parabolic function (corresponding to the real dislocation of the chimney under the influence of the horizontal forces - wind). The positive stress pattern in the concrete as well as the negative stress pattern in the reinforcing steel have been presented. The two cases were compared. Analysis of the stress changes in the chimney mantle depending on the modification in the thickness of the mantle (the thickness of the chimney mantle was altered in the linear or the abrupt way) was carried out. The relation between the stresses and the chimney's diameter change from the bottom to the top of the chimney was investigated. All the analyses were conducted by means of a specially developed computer program created in Mathematica environment. The program makes it also possible to control calculations and to visualize the results of the calculations at every stage of the calculation process.}, subject = {Architektur }, language = {en} } @inproceedings{RyanKrausshar, author = {Ryan, John and Kraußhar, Rolf S{\"o}ren}, title = {ANALYSIS OF DIRAC OPERATORS ON SOME CONFORMALLY FLAT MANIFOLDS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3008}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30081}, pages = {5}, abstract = {In this paper we shall review the role of Dirac operators arising in Clifford analysis over some examples of conformally flat manifolds.}, subject = {Architektur }, language = {en} } @inproceedings{Knyziak, author = {Knyziak, Piotr}, title = {ANALYSIS THE TECHNICAL STATE FOR LARGE-PANEL RESIDENTIAL BUILDINGS BEHIND ASSISTANCE OF ARTIFICIAL NEURAL NETWORKS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2979}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29792}, pages = {9}, abstract = {This paper presents two new methods for analysis of a technical state of large-panel residential buildings. The first method is based on elements extracted from the classical methods and on data about repairs and modernization collected from building documentations. The technical state of a building is calculated as a sum of several groups of elements defining the technical state. The deterioration in this method depends on: - time, which has passed since last repair of element or time which has passed since construction, - estimate of the state of element groups which can be determined on basis of yearly controls. This is a new unique method. it is easy to use, does not need expertise. The required data could be extracted easily from building documentations. For better accuracy the data from building inspections should be applied (in Poland inspections are made every year). The second method is based on the extracted data processing by means of the artificial neural networks. The aim is to learn the artificial neural network configurations for a set of data containing values of the technical state and information about building repairs for last years (or other information and building parameters) and next to analyse new buildings by the instructed neural network. The second profit from using artificial neural networks is the reduction of number of parameters. Instead of more then 40 parameters describing building, about 6-12 are usually sufficient for satisfactory accuracy. This method could have lower accuracy but it is less prone to data errors.}, subject = {Architektur }, language = {en} } @inproceedings{Krasnov, author = {Krasnov, Yakov}, title = {ANALYTIC FUNCTIONS IN OPERATOR VARIABLES AS SOLUTION TO PDES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2982}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29822}, pages = {16}, abstract = {Procedures of a construction of general solutions for some classes of partial differential equations (PDEs) are proposed and a symmetry operators approach to the raising the orders of the polynomial solutions to linear PDEs are develops. We touch upon an ''operator analytic function theory'' as the solution of a frequent classes of the equations of mathematical physics, when its symmetry operators forms vast enough space. The MAPLE© package programs for the building the operator variables is elaborated also.}, subject = {Architektur }, language = {en} } @inproceedings{MisyuraVolkova, author = {Misyura, E. and Volkova, Viktorija}, title = {APPLICATION OF THE MATHEMATICAL METHODS TO INVESTIGATION OF DYNAMICAL PROPERTIES OF A CABLE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3031}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30313}, pages = {7}, abstract = {The paper is devoted to the investigation of dynamical behavior of a cable under influence of various types of excitations. Such element has a low rigidity and is sensitive to dynamic effect. The structural scheme is a cable which ends are located at different level. The analysis of dynamical behavior of the cable under effect of kinematical excitation which is represented by the oscillations of the upper part of tower is given. The scheme of cable is accepted such, that lower end of an inclined cable is motionless. The motion of the upper end is assumed only in horizontal direction. The fourth-order Runge-Kutta method was realized in software. The fast Fourier transform was used for spectral analysis. Standard graphical software was adopted for presenting results of investigations. The mathematical model of oscillations of a cable was developed by the account of the viscous damping. The analysis of dynamical characteristics of a cable for various parameters of damping and kinematical excitation was carried out. The time series, spectral characteristics and amplitude-frequencies characteristics was obtained. The resonance amplitude for different oscillating regimes was estimated. It is noted that increasing of the coefficient of the viscous damping and decreasing of the amplitude of tower's oscillations reduces the value of the critical frequency and the resonant amplitudes.}, subject = {Architektur }, language = {en} } @inproceedings{Volkova, author = {Volkova, Viktorija}, title = {APPLICTION OF THE PHASE TRAJECTORIES MAPPING TO IDENTIFICATION}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3032}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30329}, pages = {7}, abstract = {The reduction of oscillation amplitudes of structural elements is necessary not only for maintenance of their durability and longevity but also for elimination of a harmful effect of oscillations on people and technology operations. The dampers are widely applied for this purpose. One of the most widespread models of structural friction forces having piecewise linear relation to displacement was analysed. T The author suggests the application of phase trajectories mapping in plane "acceleration - displacement". Unlike the trajectories mapping in a plane "velocity - displacement", they don't require large number of geometrical constructions for identification of the characteristics of dynamic systems. It promotes improving the accuracy. The analytical assumptions had been verified by numerical modeling. The results show good enough coincide between numerical and analytical estimation of dissipative characteristic.}, subject = {Architektur }, language = {en} } @inproceedings{GruberValdman, author = {Gruber, Peter and Valdman, J.}, title = {APPROXIMATE SOLUTION OF ELASTOPLASTIC PROBLEMS BASED ON THE MOREAU-YOSIDA THEOREM}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2960}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29602}, pages = {8}, abstract = {We propose a new approach to the numerical solution of quasi-static elastic-plastic problems based on the Moreau-Yosida theorem. After the time discretization, the problem is expressed as an energy minimization problem for unknown displacement and plastic strain fields. The dependency of the minimization functional on the displacement is smooth whereas the dependency on the plastic strain is non-smooth. Besides, there exists an explicit formula, how to calculate the plastic strain from a given displacement field. This allows us to reformulate the original problem as a minimization problem in the displacement only. Using the Moreau-Yosida theorem from the convex analysis, the minimization functional in the displacements turns out to be Frechet-differentiable, although the hidden dependency on the plastic strain is non-differentiable. The seconds derivative exists everywhere apart from the elastic-plastic interface dividing elastic and plastic zones of the continuum. This motivates to implement a Newton-like method, which converges super-linearly as can be observed in our numerical experiments.}, subject = {Architektur }, language = {en} } @inproceedings{Wittenberg, author = {Wittenberg, Reinhold}, title = {AUFBAU EINES MANAGEMENT-INFORMATIONS-SYSTEMS (M-I-S) UND BAUSTELLEN-CONTROLLINGS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3035}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30356}, pages = {7}, abstract = {Die meisten Insolvenzen in Deutschland kommen aus der Bauindustrie. Die Gr{\"u}nde hierf{\"u}r sind vielschichtig, jedoch kann mittels eines modern ausgerichteten M-I-S und Baustellen-Controllings fr{\"u}hzeitig erkannt werden, wie sich die Baustellenergebnisse entwickeln. Hierzu ist es notwendig, dass die Arbeitskalkulation st{\"a}ndig auf dem Laufenden gehalten wird. Nur wenn dies geschieht, sind monatliche Soll-/ Ist-Vergleiche und eine Betrachtung der cost-to-complete m{\"o}glich und sinnvoll. Eine monatlich rollierende Prognose des Baustellenergebnisses zum Bauende erm{\"o}glicht, dass gravierende Ver{\"a}nderungen des Ergebnisses umgehend aufgedeckt werden. Nur in Kenntnis dieser Entwicklungen kann das Management fr{\"u}hzeitig (im Sinne eines Fr{\"u}hwarnsystems) agieren und Steuerungsmaßnahmen ergreifen. Die Ergebnisprognose zum Bauende ist allein als Steuerungsinstrument nicht ausreichend. Die Finanzsituation der Baustelle muß auch regelm{\"a}ßig gepr{\"u}ft werden, d.h. der Leistungsstand mit der Rechnungsstellung an den Bauherren abgeglichen sowie die unbezahlten Rechnungen des Bauherren {\"u}berpr{\"u}ft werden. Das beste Prognoseergebnis ist wertlos, wenn der Bauherr seine bezogenen Leistungen nicht verg{\"u}tet. Die wirtschaftlichen Daten stehen den Verantwortlichen online im Baustellen-Informations-System (B-I-S) zur Verf{\"u}gung. Ein Ampelsystem verdeutlicht die wirtschaftliche Lage der Baustelle.}, subject = {Architektur }, language = {de} } @inproceedings{LourensvanRooyen, author = {Lourens, Eliz-Mari and van Rooyen, G.C.}, title = {Automating Preliminary Column Force Calculations In Multy-Storey Buildings}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2986}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29864}, pages = {10}, abstract = {In civil engineering practice, values of column forces are often required before any detailed analysis of the structure has been performed. One of the reasons for this arises from the fast-tracked nature of the majority of construction projects: foundations are laid and base columns constructed whilst analysis and design are still in progress. A need for quick results when feasibility studies are performed or when evaluating the effect of design changes on supporting columns form other situations in which column forces are required, but where a detailed analysis to get these forces seems superfluous. Thus it was concluded that the development of an efficient tool for column force calculations, in which the extensive input required in a finite element analysis is to be avoided, would be highly beneficial. The automation of the process is achieved by making use of a Voronoi diagram. The Voronoi diagram is used a) for subdividing the floor into influence areas and b) as a basis for automatic load assignment. The implemented procedure is integrated into a CAD system in which the relevant geometric information of the floor, i.e. its shape and column layout, can be defined or uploaded. A brief description of the implementation is included. Some comparative results and considerations regarding the continuation of the study are given.}, subject = {Architektur }, language = {en} } @inproceedings{CacaoConstalesKrausshar, author = {Cacao, Isabel and Constales, Denis and Kraußhar, Rolf S{\"o}ren}, title = {BESSEL FUNCTIONS AND HIGHER DIMENSIONAL DIRAC TYPE EQUATIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2936}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29366}, pages = {8}, abstract = {In this paper we study the structure of the solutions to higher dimensional Dirac type equations generalizing the known λ-hyperholomorphic functions, where λ is a complex parameter. The structure of the solutions to the system of partial differential equations (D- λ) f=0 show a close connection with Bessel functions of first kind with complex argument. The more general system of partial differential equations that is considered in this paper combines Dirac and Euler operators and emphasizes the role of the Bessel functions. However, contrary to the simplest case, one gets now Bessel functions of any arbitrary complex order.}, subject = {Architektur }, language = {en} } @inproceedings{SeidelGasserWerner, author = {Seidel, Tilman and Gasser, Ingenuin and Werner, Bodo}, title = {CAR FOLLOWING MODELS FOR PHENOMENONS ON THE HIGHWAY}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3018}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30187}, pages = {8}, abstract = {Car following models are used to describe the behavior of a number of cars on the road dependent on the distance to the car in front. We introduce a system of ordinary differential equations and perform a theoretical and numerical analysis in order to find solutions that reflect various traffic situations. We present three different variations of the model motivated by reality.}, subject = {Architektur }, language = {en} } @inproceedings{BrackxDeSchepperSommen, author = {Brackx, Fred and De Schepper, Nele and Sommen, Frank}, title = {Clifford-Hermite and Two-Dimensional Clifford-Gabor Filters For Early Vision}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2930}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29303}, pages = {22}, abstract = {Image processing has been much inspired by the human vision, in particular with regard to early vision. The latter refers to the earliest stage of visual processing responsible for the measurement of local structures such as points, lines, edges and textures in order to facilitate subsequent interpretation of these structures in higher stages (known as high level vision) of the human visual system. This low level visual computation is carried out by cells of the primary visual cortex. The receptive field profiles of these cells can be interpreted as the impulse responses of the cells, which are then considered as filters. According to the Gaussian derivative theory, the receptive field profiles of the human visual system can be approximated quite well by derivatives of Gaussians. Two mathematical models suggested for these receptive field profiles are on the one hand the Gabor model and on the other hand the Hermite model which is based on analysis filters of the Hermite transform. The Hermite filters are derivatives of Gaussians, while Gabor filters, which are defined as harmonic modulations of Gaussians, provide a good approximation to these derivatives. It is important to note that, even if the Gabor model is more widely used than the Hermite model, the latter offers some advantages like being an orthogonal basis and having better match to experimental physiological data. In our earlier research both filter models, Gabor and Hermite, have been developed in the framework of Clifford analysis. Clifford analysis offers a direct, elegant and powerful generalization to higher dimension of the theory of holomorphic functions in the complex plane. In this paper we expose the construction of the Hermite and Gabor filters, both in the classical and in the Clifford analysis framework. We also generalize the concept of complex Gaussian derivative filters to the Clifford analysis setting. Moreover, we present further properties of the Clifford-Gabor filters, such as their relationship with other types of Gabor filters and their localization in the spatial and in the frequency domain formalized by the uncertainty principle.}, subject = {Architektur }, language = {en} } @inproceedings{DoganArditiGunaydin, author = {Dogan, Sevgi Zeynep and Arditi, D. and Gunaydin, H. Murat}, title = {COMPARISON OF ANN AND CBR MODELS FOR EARLY COST PREDICTION OF STRUCTURAL SYSTEMS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2942}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29421}, abstract = {Reasonably accurate cost estimation of the structural system is quite desirable at the early stages of the design process of a construction project. However, the numerous interactions among the many cost-variables make the prediction difficult. Artificial neural networks (ANN) and case-based reasoning (CBR) are reported to overcome this difficulty. This paper presents a comparison of CBR and ANN augmented by genetic algorithms (GA) conducted by using spreadsheet simulations. GA was used to determine the optimum weights for the ANN and CBR models. The cost data of twenty-nine actual cases of residential building projects were used as an example application. Two different sets of cases were randomly selected from the data set for training and testing purposes. Prediction rates of 84\% in the GA/CBR study and 89\% in the GA/ANN study were obtained. The advantages and disadvantages of the two approaches are discussed in the light of the experiments and the findings. It appears that GA/ANN is a more suitable model for this example of cost estimation where the prediction of numerical values is required and only a limited number of cases exist. The integration of GA into CBR and ANN in a spreadsheet format is likely to improve the prediction rates.}, subject = {Architektur }, language = {en} } @inproceedings{SzolomickiBaranski, author = {Szolomicki, Jerzy Pawel and Baranski, Jacek}, title = {COMPUTATIONAL SIMULATIONS FOR HOMOGENIZATION OF MASONRY STRUCTURES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3026}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30265}, pages = {7}, abstract = {In this paper proposed the application of two-parameters damage model, based on non-linear finite element approach, to the analysis of masonry panels. Masonry is treated as a homogenized material, for which the material characteristics can be defined by using homogenization technique. The masonry panels subjected to shear loading are studied by using the proposed procedure within the framework of three-dimensional analyses. The nonlinear behaviour of masonry can be modelled using concepts of damage theory. In this case an adequate damage function is defined for taking into account different response of masonry under tension and compression states. Cracking can, therefore, be interpreted as a local damage effect, defined by the evolution of known material parameters and by one or several functions which control the onset and evolution of damage. The model takes into account all the important aspects which should be considered in the nonlinear analysis of masonry structures such as the effect of stiffness degradation due to mechanical effects and the problem of objectivity of the results with respect to the finite element mesh. Finally the proposed damage model is validated with a comparison with experimental results available in the literature.}, subject = {Architektur }, language = {en} }