@article{SaqlaiGhaniKhanetal., author = {Saqlai, Syed Muhammad and Ghani, Anwar and Khan, Imran and Ahmed Khan Ghayyur, Shahbaz and Shamshirband, Shahaboddin and Nabipour, Narjes and Shokri, Manouchehr}, title = {Image Analysis Using Human Body Geometry and Size Proportion Science for Action Classification}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {volume 10, issue 16, article 5453}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10165453}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200904-42322}, pages = {24}, abstract = {Gestures are one of the basic modes of human communication and are usually used to represent different actions. Automatic recognition of these actions forms the basis for solving more complex problems like human behavior analysis, video surveillance, event detection, and sign language recognition, etc. Action recognition from images is a challenging task as the key information like temporal data, object trajectory, and optical flow are not available in still images. While measuring the size of different regions of the human body i.e., step size, arms span, length of the arm, forearm, and hand, etc., provides valuable clues for identification of the human actions. In this article, a framework for classification of the human actions is presented where humans are detected and localized through faster region-convolutional neural networks followed by morphological image processing techniques. Furthermore, geometric features from human blob are extracted and incorporated into the classification rules for the six human actions i.e., standing, walking, single-hand side wave, single-hand top wave, both hands side wave, and both hands top wave. The performance of the proposed technique has been evaluated using precision, recall, omission error, and commission error. The proposed technique has been comparatively analyzed in terms of overall accuracy with existing approaches showing that it performs well in contrast to its counterparts.}, subject = {Bildanalyse}, language = {en} } @article{ShabaniSamadianfardSattarietal., author = {Shabani, Sevda and Samadianfard, Saeed and Sattari, Mohammad Taghi and Mosavi, Amir and Shamshirband, Shahaboddin and Kmet, Tibor and V{\´a}rkonyi-K{\´o}czy, Annam{\´a}ria R.}, title = {Modeling Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines; Comparative Analysis}, series = {Atmosphere}, volume = {2020}, journal = {Atmosphere}, number = {Volume 11, Issue 1, 66}, doi = {10.3390/atmos11010066}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200110-40561}, pages = {17}, abstract = {Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters.}, subject = {Maschinelles Lernen}, language = {en} } @article{ShamshirbandBabanezhadMosavietal., author = {Shamshirband, Shahaboddin and Babanezhad, Meisam and Mosavi, Amir and Nabipour, Narjes and Hajnal, Eva and Nadai, Laszlo and Chau, Kwok-Wing}, title = {Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {volume 14, issue 1}, publisher = {Taylor \& Francis}, doi = {10.1080/19942060.2020.1715842}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200227-41013}, pages = {367 -- 378}, abstract = {A novel combination of the ant colony optimization algorithm (ACO)and computational fluid dynamics (CFD) data is proposed for modeling the multiphase chemical reactors. The proposed intelligent model presents a probabilistic computational strategy for predicting various levels of three-dimensional bubble column reactor (BCR) flow. The results prove an enhanced communication between ant colony prediction and CFD data in different sections of the BCR.}, subject = {Maschinelles Lernen}, language = {en} } @article{ShamshirbandJoloudariGhasemiGoletal., author = {Shamshirband, Shahaboddin and Joloudari, Javad Hassannataj and GhasemiGol, Mohammad and Saadatfar, Hamid and Mosavi, Amir and Nabipour, Narjes}, title = {FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {Volume 8, Issue 1, article 28}, publisher = {MDPI}, doi = {10.3390/math8010028}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200107-40541}, pages = {24}, abstract = {Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods.}, subject = {Vernetzung}, language = {en} }