@inproceedings{BoykoKoepplerKirichuk2000, author = {Boyko, Igor P. and K{\"o}ppler, H. and Kirichuk, A.}, title = {INTERACTION OF SPATIAL THIN-WALLED STRUCTURES WITH FLUID-SATURATED SOIL}, doi = {10.25643/bauhaus-universitaet.574}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5748}, year = {2000}, abstract = {Thin-walled spatial structures are broadly used in the modern technician and building. In fuel industry for long-term keeping of oil and gas are used reservoirs of various capacity, which on technological reasons can be shipped under the soil. Shells of reservoirs combine in itself high toughness and low specific consumption of materials. At the same time, being under the soil, they feel steady-state and dynamic loads from ambiance, which particularly in the event, when reservoir is empty, can bring about the loss of stability of its form. On the other hand contact interactions of shell and soil greatly depend on features of ambiance and its saturating of liquid. For building generalized porous springy ambiance models, saturated by the liquid, it is possible to use Bio equations of motion for displacement of hard and fluid phases. Elaboration of mathematical specified interaction models and theirs realization by means of modern computing software allows to study behaviour of spatial thin-walled designs on base of geometric nonlinear theory of shells}, subject = {Raumtragwerk}, language = {en} } @inproceedings{ZolotovAkimov2003, author = {Zolotov, Alexander B. and Akimov, Pavel}, title = {Discrete-continual Finite Element Method of Analysis for Three-dimensional Curvilinear Structures}, doi = {10.25643/bauhaus-universitaet.384}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3848}, year = {2003}, abstract = {This paper is devoted to discrete-continual finite element method (DCFEM) of analysis for three-dimensional curvilinear structures. Operational and variational formulations of the problem in the ring coordinate system are presented. The discrete-continual design model for structures with constant physical and geometrical parameters in longitudinal direction is offered on the basis of so-called curvilinear discrete-continual finite elements. Element coordinate system, approximation of nodal unknowns, construction of element nodal load vector are under consideration. Element system of differential equations is formulated with use of special generalized block-structured stiffness matrix of discrete-continual finite element. Local differential relations are formulated. Resultant multipoint boundary problem for system of ordinary differential equations is given. Method of analytical solution of multipoint boundary problems in structural analysis is offered as well. Its major peculiarities include universality, computer-oriented algorithm involving theory of distributions, computational stability, optimal conditionality of resultant systems, partial Jordan decomposition of matrix of coefficients, eliminating necessity of calculation of root vectors. Brief information concerning developed software is provided.}, subject = {Raumtragwerk}, language = {de} }