@book{OPUS4-2182, title = {Simulationsforum 2013 - Schweißen und W{\"a}rmebehandlung}, editor = {Hildebrand, J{\"o}rg and Loose, Tobias and Sakkiettibutra, Jens and Brand, Marcus}, publisher = {F{\"o}rderverein W{\"a}rmebehandlung und Schweißen e.V.}, address = {Weimar}, isbn = {978-3-00-045902-3}, doi = {10.25643/bauhaus-universitaet.2182}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20140512-21820}, pages = {234}, abstract = {Das Buch ver{\"o}ffentlicht 22 Fachbeitr{\"a}ge der Konferenz "Simulationsforum 2013 - Schweißen und W{\"a}rmebehandlung".}, subject = {Schweißen}, language = {de} } @inproceedings{AldaCremersBilek2004, author = {Alda, Sascha and Cremers, Armin B. and Bilek, Jochen}, title = {Support of Collaborative Structural Design Processes through the Integration of Peer-to-Peer and Multiagent Architectures}, doi = {10.25643/bauhaus-universitaet.148}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1481}, year = {2004}, abstract = {Structural engineering projects are increasingly organized in networked cooperations due to a permanently enlarged competition pressure and a high degree of complexity while performing the concurrent design activities. Software that intends to support such collaborative structural design processes implicates enormous requirements. In the course of our common research work, we analyzed the pros and cons of the application of both the peer-to-peer (University of Bonn) and multiagent architecture style (University of Bochum) within the field of collaborative structural design. In this paper, we join the benefits of both architecture styles in an integrated conceptual approach. We demonstrate the surplus value of the integrated multiagent-peer-to-peer approach by means of an example scenario in which several structural engineers are co-operatively designing the basic structural elements of an arched bridge, applying heterogeneous CAD systems.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{BaranskiBoron2003, author = {Baranski, Jacek and Boron, Jacek}, title = {Computer Modeling of the Joints for WGP Construction Systems}, doi = {10.25643/bauhaus-universitaet.293}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2935}, year = {2003}, abstract = {Poland is not situated in any seismic region of the earth, however there are still areas were underground mining is being conducted. In these areas, so-called 'paraseismic tremors', are very frequent phenomena. In the situation when a building examination is realized in order to define its safety, it is necessary to make a complete analysis, in which an influence of tremors should be included. To decide if a building is able to carry out any dynamic loads or not, it is necessary to compute its dynamic characteristics, i.e. natural frequencies. It is not possible using any standard techniques. After diagnosis a building in situ by an expert, computer techniques together with specialized software for dynamic, static, and strength analyses become a suitable tool. In this paper a special attention was paid to a typical twelve-store WGP (Wroclaw Great Plate) prefabricated building, concerning special type of joints. During dynamic actions these joints have a decisive influence on building's behavior. Paraseismic tremors are especially dangerous for these buildings and can be the reason of pre-failure states. It can be difficult and very expensive to prepare laboratory investigations of the part of a building or of a separate joint; therefore the computer modeling suitable to investigate behavior of such elements and whole buildings under different kinds of loads was used.}, subject = {Geb{\"a}ude}, language = {en} } @inproceedings{BergerGraeffWeinberg1997, author = {Berger, Hans and Graeff-Weinberg, K.}, title = {FEM-Detailuntersuchungen an Tragwerken unter Einsatz von pNh-{\"U}bergangselementen}, doi = {10.25643/bauhaus-universitaet.426}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4267}, year = {1997}, abstract = {Detailuntersuchungen an Tragwerken f{\"u}hren bei FE-Berechnungen immer wieder auf das Problem einer geeigneten Netzgestaltung. W{\"a}hrend in weiten Bereichen ein grobes Netz ausreicht, muß an kritischen Stellen ein sehr feines Netz gew{\"a}hlt werden, um gerade dort hinreichend genaue Ergebnisse zu erhalten. Bei der Realisierung lokaler Netzverdichtungen stellt die Gestaltung des {\"U}bergangs vom groben zum feinen Netz das Hauptproblem dar. Im Beitrag wird hierzu eine Familie von FE-{\"U}bergangselementen vorgestellt, mit denen sich eine voll-kompatible Kopplung von wenigen großen Elementen mit vielen kleinen Elementen bereits {\"u}ber nur eine Stufe erzielen l{\"a}ßt. Diese neu entwickelten sogenannten pNh-Elemente erm{\"o}glichen an einer oder mehreren Seiten den Anschluß von N kleineren Elementen (Elementseiten f{\"u}r h-Verfeinerung). Das wird durch N st{\"u}ckweise definierte Ansatzfunktionen an den entsprechenden Seiten erreicht, wobei die Teilung nicht {\"a}quidistant sein braucht. Dar{\"u}ber hinaus ist es m{\"o}glich, Elemente unterschiedlichen Polynomgrades p an den Standardseiten und den Verfeinerungsseiten anzuschließen. Der praktische Einsatz der {\"U}bergangselemente setzt geeignete automatische oder halbautomatische Netzgeneratoren voraus, die diese Elemente einbeziehen. Im Rahmen einer substrukturorientierten Modellierung l{\"a}ßt sich dies besonders g{\"u}nstig realisieren. Im Beitrag wird gezeigt, wie durch Zerlegung des Gesamtmodells in Bereiche mit grobem Netz, mit {\"U}bergangsnetz und mit feinem Netz, eine effektive Generierung der Netzverdichtungen zu erreichen ist. An einem praktischen Beispiel aus dem Bauingenieurwesen werden die Vorteile des vorgestellten {\"U}bergangselementkonzeptes umfassend demonstriert.}, subject = {Tragwerk}, language = {de} } @inproceedings{BoukampAkinci2004, author = {Boukamp, Frank and Akinci, Burcu}, title = {Towards Automated Defect Detection: Object-oriented Modeling of Construction Specifications}, doi = {10.25643/bauhaus-universitaet.131}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1315}, year = {2004}, abstract = {This paper describes an ongoing research on the representation and reasoning about construction specifications, which is part of a bigger research project that aims at developing a formalism for automating the identification of deviations and defects on construction sites. We specifically describe the requirements on product and process models and an approach for representing and reasoning about construction specifications to enable automated detection and assessment of construction deviations and defects. This research builds on the previous research on modeling design specifications and extends and elaborates concept of contexts developed in that domain. The paper provides an overview of how the construction specifications are being modele d in this research and points out future steps that need to be accomplished to develop the envisioned automated deviation and defect detection system.}, subject = {Bauwerk}, language = {en} } @phdthesis{Bubner2006, author = {Bubner, Andr{\´e}}, title = {Datenmodelle zur Bearbeitung von Ingenieuraufgaben am Beispiel von Wohnh{\"a}usern in Stahlbauweise}, doi = {10.25643/bauhaus-universitaet.808}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20070423-8580}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2006}, abstract = {Modelle bilden die Grundlage der Planung. Sie repr{\"a}sentieren die zur Bearbeitung erforderlichen Eigenschaften eines Bauwerks in einer an die spezifische Aufgabe angepassten Form. Zwischen den verschiedenen zur Abbildung des Bauwerks eingesetzten Modellen bestehen fachliche Zusammenh{\"a}nge bez{\"u}glich der darin abgebildeten Aspekte. Diese Abh{\"a}ngigkeiten werden in der praktischen Planungsbearbeitung gegenw{\"a}rtig auf Grundlage von Erfahrungswerten, normativen Vorgaben und vereinfachenden Annahmen ber{\"u}cksichtigt. Die detailliertere Modellierung von Bauwerkseigenschaften f{\"u}hrt zu einer engeren Verzahnung der verschiedenen Modelle. Um eine fachliche Inselbildung zu vermeiden, ist eine entsprechend angepasste Abbildung der zwischen den einzelnen Modellen bestehenden Beziehungen erforderlich. Mit den steigenden Anspr{\"u}chen an eine Bearbeitung von Ingenieuraufgaben gewinnt eine {\"u}ber den Zweck der Bereitstellung ausgew{\"a}hlter Informationen zum Bauwerk und der Unterst{\"u}tzung eines Datenaustauschs zwischen verschiedenen Fachplanern hinausgehende datentechnische Abbildung an Bedeutung. Dies setzt eine Diskussion der Anforderungen an eine solche Beschreibung aus fachlicher Sicht voraus. Die Untersuchung der fachlichen Anforderungen wird am Beispiel von Wohnh{\"a}usern in Stahlbauweise gef{\"u}hrt.}, subject = {Modellierung}, language = {de} } @phdthesis{Chan, author = {Chan, Chiu Ling}, title = {Smooth representation of thin shells and volume structures for isogeometric analysis}, doi = {10.25643/bauhaus-universitaet.4208}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200812-42083}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {162}, abstract = {The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part. First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of "isoparametric", for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images. Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids. Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1 continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems.}, subject = {Modellierung}, language = {en} } @article{ChubukovKapitanovMoninaetal., author = {Chubukov, A. and Kapitanov, Valeriy and Monina, Olga and Silyanov, Valentin and Brannolte, Ulrich}, title = {Simulation of Regional Mortality Rate in Road Accidents}, series = {Transportation Research Procedia 20}, journal = {Transportation Research Procedia 20}, doi = {10.1016/j.trpro.2017.01.031}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170331-30956}, pages = {112 -- 124}, abstract = {The paper gives the results of scientific research, which, being based on probabilistic and statistical modeling, identifies the relationship of certain socio-economic factors and the number of people killed in road accidents in the Russian Federation regions. It notes the identity of processes in various fields, in which there is loss of life. Scientific methods and techniques were used in the process of data processing and study findings: systematic approach, methods of system analysis (algorithmization, mathematical programming) and mathematical statistics. The scientific novelty lies in the formulation, formalization and solving problems related to the analysis of regional road traffic accidents, its modeling taking into account the factors of socio-economic impact.}, subject = {Modellierung}, language = {en} } @article{Dudek1997, author = {Dudek, Mariusz}, title = {Modellierung der Verkehrsmittelwahl}, doi = {10.25643/bauhaus-universitaet.481}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4817}, year = {1997}, abstract = {Die Zielstellung der Modal­Split­Betrachtungen l{\"a}uft darauf hinaus, Entscheidungs-kriterien zu erarbeiten, nach denen die einzelnen Personen ihre Verkehrsmittel ausw{\"a}hlen. In dieser Ver{\"o}ffentlichung wurden alle drei Gruppen der Modelle (klassische, verhaltensorientierte und der Analyse) der Verkehrsaufteilung kurz charakterisiert. Dann wurden vier ausgew{\"a}hlte Modelle genauer beschrieben. Zum Schluß wird das Modell der Verkehrsmittelwahl dargestellt , das f{\"u}r die Untersuchung der Verkehrsaufteilung in Krakau verwendet wurde .}, subject = {Verkehrsmittelwahl}, language = {de} } @inproceedings{EslimyIsfahanyPegels2004, author = {Eslimy-Isfahany, S. H. R. and Pegels, Georg}, title = {Net-distributed Co-operation Including Developing Countries, Practical Case Study - Iran}, doi = {10.25643/bauhaus-universitaet.142}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1421}, year = {2004}, abstract = {The scientific transfer of key technology features to developing countries, together with adequate competence, localisation and adaptation, is the primary purpose of the proposed investigation. It is evident that introducing high-level CAD design and detailing will improve the planning process in developing countries. Successful utilization of applied information technology for the planning process, however, depends on the user-interface of individual software. Therefore, to open the great opportunity embedded in CAD software for clients globally, the language and character-set barrier of traditional user-interfaces must be overcome. A proposal for a research program is given here to address such issue in favour of global civil engineering.}, subject = {Ingenieurbau}, language = {en} } @article{Fink2004, author = {Fink, Thomas}, title = {Structural analysis, design and detailing using standard CAD software and standard building information model}, doi = {10.25643/bauhaus-universitaet.270}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2702}, year = {2004}, abstract = {This paper describes the concept of a german commercial software package developed for the needs of structural engineers. Using a standard CAD software as user interface for all geometrical data and to save all important input data, there is a natural link to upcoming building information models.}, subject = {Bauindustrie}, language = {en} } @article{FischerSteinhage1997, author = {Fischer, A. and Steinhage, V.}, title = {Ein modellbasiertes Konzept zur st{\"a}dteplanerischen Kartierung durch digitale Bildanalyse}, doi = {10.25643/bauhaus-universitaet.487}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4870}, year = {1997}, abstract = {There is an increasing need for 3D building extraction from aerial images for various applications such astown planning, environmental- and property-related studies. Aerial images usually reveal on one hand a certain amount of information not relevant for the given task of building extraction like vegetation, cars etc. On the other hand there is a loss of relevant information due to occlusions, low contrasts or disadvantageous perspectives. Therefore a promising concept for automated building reconstruction must incorporate a suffciantly complete model of the objects of interest. We propose a model-based approach to 3D building extraction from aerial images which reveals a tight coupling between a generic 3D object model and an explicit 2D image model. The generic object model employes domain specific volumetric primitives (i. e. building part models) and combination schemes. To cover the gap between 3D object models and 2D image data the image model is employed to predict the projective building appearences in aerial images. We present a strategy for a model-based building extraction based on the recognition-by-components principle and show first experimental results derived from international test sets}, subject = {Stadtplanung}, language = {de} } @inproceedings{Gasser2003, author = {Gasser, Ingenuin}, title = {On A New One-Dimensional Model to Describe Tunnel Fires}, doi = {10.25643/bauhaus-universitaet.288}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2889}, year = {2003}, abstract = {We present a model derived to describe tunnel fires. The model originates in a compressible description of the air in the tunnel. It takes into account the strong buoyancy forces and at the same time the small Mach-number of the airflow. We comment on the derivation, on analytical results and on numerical simulations of the model. The model has been validated using data from real tunnel fire experiments. It shows good agreement with the real situation.}, subject = {Tunnel}, language = {en} } @inproceedings{GebbekenBaumhauerIonita2004, author = {Gebbeken, Norbert and Baumhauer, Andreas and Ionita, Mihai}, title = {Increasing the Reliability and Performance through Automatization and Parallel Working}, doi = {10.25643/bauhaus-universitaet.139}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1397}, year = {2004}, abstract = {Re-examination of the behaviour of structures can be necessary due to deterioration or changes in the traffic situation during their lifetime. The Finite Element Method (FEM) is widely used in order to accomplish numerical analysis. Considering the development of computer performance, more detailed FEM models can be analyzed, even on site, with mobile computers. To compensate the increasing amount of data needed for the model input, measures need to be taken to save time, by distributing the work. In order to provide consistency to the model, fedback data must be checked upon reception. A local wireless computer network of ultra-portable devices linked together with a computer can provide the coordination necessary for efficient parallel working. Based on a digital model consisting of all data gathered, structural modelling and numerical analysis are performed automatically. Thus, the user is released from the work that can be automatized and the time needed for the overall analysis of a structure is decreased.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{GrigrievaLymarenko2003, author = {Grigrieva, Polina and Lymarenko, Yulia}, title = {Mathematical modeling of nonlinear effects for vibrodiagnostics of fatigue cracks}, doi = {10.25643/bauhaus-universitaet.291}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2917}, year = {2003}, abstract = {The vibration control of complicated mechanical structures is impossible without proper mathematical models that allow to have a true apprehension of events occurring in structural member before the starting of the experiment and correct the diagnostic experiment in case of need. An approach that implies using of a discrete model reflecting all required features of a prototype system and permitting of an effective analytical and numerical investigation is proposed in the work. At first a discrete model of a bladed disk with flaw is considered. Taking into account the symmetry of the structure by utilization of mathematical tools of group presentation theory the number of degrees of freedom of the system is diminished. Small damage of the disk is regarded as perturbation of structure symmetry. The distinction of vibration characteristics such as natural frequencies and mode shapes of damaged and undamaged systems is determined theoretically with the help of perturbation theory and can be used as an effective diagnostic criterion of a small-scale damage of the structure. In the second part of the work a non-linear two-mass model of an acoustic emission in a damaged structure is proposed. On basis of the numerical integration of the nonlinear differential equations and expansion of the derived solution into a Fourier series free and forced vibrations of the model are investigated. It is shown that proposed model reflects all characteristic properties of vibrations of damaged structures: reduction of natural frequency, sub- and super-resonances, acoustic effects.}, subject = {Nichtlineare Mechanik}, language = {en} } @article{GuoAlajlanZhuangetal., author = {Guo, Hongwei and Alajlan, Naif and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials}, series = {Computational Mechanics}, volume = {2023}, journal = {Computational Mechanics}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s00466-023-02287-x}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63666}, pages = {1 -- 12}, abstract = {We present a physics-informed deep learning model for the transient heat transfer analysis of three-dimensional functionally graded materials (FGMs) employing a Runge-Kutta discrete time scheme. Firstly, the governing equation, associated boundary conditions and the initial condition for transient heat transfer analysis of FGMs with exponential material variations are presented. Then, the deep collocation method with the Runge-Kutta integration scheme for transient analysis is introduced. The prior physics that helps to generalize the physics-informed deep learning model is introduced by constraining the temperature variable with discrete time schemes and initial/boundary conditions. Further the fitted activation functions suitable for dynamic analysis are presented. Finally, we validate our approach through several numerical examples on FGMs with irregular shapes and a variety of boundary conditions. From numerical experiments, the predicted results with PIDL demonstrate well agreement with analytical solutions and other numerical methods in predicting of both temperature and flux distributions and can be adaptive to transient analysis of FGMs with different shapes, which can be the promising surrogate model in transient dynamic analysis.}, subject = {W{\"a}rme{\"u}bergang}, language = {en} } @phdthesis{Goebel, author = {G{\"o}bel, Luise}, title = {Experimental and semi-analytical multiscale approaches for the characterization of the elastic and viscoelastic behavior of polymer-modified cement-based materials}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, isbn = {978-3-95773-269-9}, doi = {10.25643/bauhaus-universitaet.3827}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181211-38279}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {259}, abstract = {Polymer-modified cement concrete (PCC) is a heterogeneous building material with a hierarchically organized microstructure. Therefore, continuum micromechanics-based multiscale models represent a promising method to estimate the mechanical properties. By means of a bottom-up approach, homogenized properties at the macroscopic scale are derived considering microstructural characteristics. The extension of existing multiscale models for the application to PCC is the main objective of this work. For that, cross-scale experimental studies are required. Both macroscopic and microscopic mechanical tests are performed to characterize the elastic and viscoelastic properties of different PCC. The comparison between experiment and model prediction illustrates the success of the modeling approach.}, subject = {Elastizit{\"a}tsmodul}, language = {en} } @article{GuerlebeckLegatiukNilssonetal., author = {G{\"u}rlebeck, Klaus and Legatiuk, Dmitrii and Nilsson, Henrik and Smarsly, Kay}, title = {Conceptual modelling: Towards detecting modelling errors in engineering applications}, series = {Mathematical Methods in Applied Sciences}, journal = {Mathematical Methods in Applied Sciences}, doi = {10.1002/mma.5934}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200110-40614}, pages = {1 -- 10}, abstract = {Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer "simple" objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems.}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{HahnWeitzmann2003, author = {Hahn, Stephan and Weitzmann, R{\"u}diger}, title = {Nichtlineare Analyse von hybriden Konstruktionen unter Verwendung von selektiv gekoppelten Tragwerks- und Querschnittsmodellen}, doi = {10.25643/bauhaus-universitaet.302}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3026}, year = {2003}, abstract = {Bei der Untersuchung hybrider Strukturen kann eine Kopplung von Modellen unterschiedlicher Modellebenen vorteilhaft sein. Durch selektive Kopplung von Tragwerks- und Querschnittsmodellen in ausgew{\"a}hlten Bereichen der Konstruktion kann z.B. eine Verbesserung der Abbildungsgenauigkeit erzielt werden. Dadurch werden erweiterte Aussagen {\"u}ber das Querschnittstragverhalten in extrem beanspruchten Teilen des Tragwerks bei optionaler Skalierbarkeit des Modellumfangs m{\"o}glich. Im Beitrag werden ausgew{\"a}hlte Varianten der Modellbildung gegen{\"u}bergestellt und bewertet. Hierbei werden Aspekte der physikalischen Nichtlinearit{\"a}t von hybriden Konstruktionen insbesondere von Stahlbetonkonstruktionen ber{\"u}cksichtigt. Die Einbeziehung von Verfahren der mathematischen Optimierung in die Berechnungsstrategie erm{\"o}glicht die L{\"o}sung der zugrunde liegenden nichtlinearen Problemstellungen unter Vorgabe von Bemessungszielen und unter Beachtung von Grenzzustandsbedingungen.}, subject = {Tragwerk}, language = {de} } @inproceedings{HartmannMeissnerRueppel2004, author = {Hartmann, Dietrich and Meißner, Udo F. and Rueppel, Uwe}, title = {Integration of Productmodel Databases into Multi-Agent Systems}, doi = {10.25643/bauhaus-universitaet.141}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1410}, year = {2004}, abstract = {This paper deals with two different agent-based approaches aimed at the incorporation of complex design information into multi-agent planning systems. The first system facilitates collaborative structural design processes, the second one supports fire engineering in buildings. Both approaches are part of two different research projects that belong to the DFG1 priority program 1103 entitled "Network-based Co-operative Planning Processes in Structural Engineering" (DFG 2000). The two approaches provide similar database wrapper agents to integrate relevant design information into two multi-agent systems: Database wrapper agents make the relevant product model data usable for further agents in the multi-agent system, independent on their physical location. Thus, database wrapper agents act as an interface between multi-agent system and heterogeneous database systems. The communication between the database wrapper agents and other requesting agents presumes a common vocabulary: a specific database ontology that maps database related message contents into database objects. Hereby, the software-wrapping technology enables the various design experts to plug in existing database systems and data resources into a specific multi-agent system easily. As a consequence, dynamic changes in the design information of large collaborative engineering projects are adequately supported. The flexible architecture of the database wrapper agent concept is demonstrated by the integration of an XML and a relational database system.}, subject = {Ingenieurbau}, language = {en} }