@unpublished{RezakazemiMosaviShirazian, author = {Rezakazemi, Mashallah and Mosavi, Amir and Shirazian, Saeed}, title = {ANFIS pattern for molecular membranes separation optimization}, volume = {2018}, doi = {10.25643/BAUHAUS-UNIVERSITAET.3821}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181122-38212}, pages = {1 -- 20}, abstract = {In this work, molecular separation of aqueous-organic was simulated by using combined soft computing-mechanistic approaches. The considered separation system was a microporous membrane contactor for separation of benzoic acid from water by contacting with an organic phase containing extractor molecules. Indeed, extractive separation is carried out using membrane technology where complex of solute-organic is formed at the interface. The main focus was to develop a simulation methodology for prediction of concentration distribution of solute (benzoic acid) in the feed side of the membrane system, as the removal efficiency of the system is determined by concentration distribution of the solute in the feed channel. The pattern of Adaptive Neuro-Fuzzy Inference System (ANFIS) was optimized by finding the optimum membership function, learning percentage, and a number of rules. The ANFIS was trained using the extracted data from the CFD simulation of the membrane system. The comparisons between the predicted concentration distribution by ANFIS and CFD data revealed that the optimized ANFIS pattern can be used as a predictive tool for simulation of the process. The R2 of higher than 0.99 was obtained for the optimized ANFIS model. The main privilege of the developed methodology is its very low computational time for simulation of the system and can be used as a rigorous simulation tool for understanding and design of membrane-based systems. Highlights are, Molecular separation using microporous membranes. Developing hybrid model based on ANFIS-CFD for the separation process, Optimization of ANFIS structure for prediction of separation process}, subject = {Fluid}, language = {en} } @article{VoelkerMaempelKornadt, author = {V{\"o}lker, Conrad and M{\"a}mpel, Silvio and Kornadt, Oliver}, title = {Measuring the human body's micro-climate using a thermal manikin}, series = {Indoor Air}, journal = {Indoor Air}, number = {24, 6}, doi = {10.25643/bauhaus-universitaet.3815}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181025-38153}, pages = {567 -- 579}, abstract = {The human body is surrounded by a micro-climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro-climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro-climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro-climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro-climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient.}, subject = {Raumklima}, language = {en} } @phdthesis{Pastohr2004, author = {Pastohr, Henry}, title = {Thermodynamische Modellierung eines Aufwindkraftwerkes}, doi = {10.25643/bauhaus-universitaet.81}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040803-867}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2004}, abstract = {Die Energieversorgung auf der Erde wird zuk{\"u}nftig zu einem Problem. Bedingt ist dies durch eine fortschreitende Verknappung der nat{\"u}rlichen Ressourcen, wie Kohle, Gas und {\"O}l sowie einer Zunahme der CO2-Konzentration und anderer Schadstoffe in der Atmosph{\"a}re. Regenerative Energiequellen m{\"u}ssen genutzt werden, um den steigenden Energiebedarf zu sichern. Eine interessante M{\"o}glichkeit zur Nutzung der Solarenergie stellt das Aufwindkraftwerk dar. Das Aufwindkraftwerk besteht aus einem Kamin, um den ein Glasdachkollektor auf dem Erdboden angeordnet ist. Am Fuße des Kamins befinden sich Turbinen und Generatoren. Die einfallende Solarenergie wird haupts{\"a}chlich {\"u}ber die Wechselwirkung mit dem Erdreich in thermische Energie, in kinetische Energie, in Rotationsenergie und in elektrische Energie umgewandelt. Das Ziel der Arbeit bestand in der physikalisch-mathematischen Modellierung, der genaueren Erkennung des Wirkprinzips und der Diskussion der Anlagenparameter Leistung und Wirkungsgrad. Im Rahmen dieser Aufgabe wurden dazu station{\"a}re und instation{\"a}re Computational Fluid Dynamic (CFD) Modelle und station{\"a}re und instation{\"a}re vereinfachte Modelle entwickelt, diskutiert und miteinander verglichen. Grundlegend neue Erkenntnisse wurden bei den Verl{\"a}ufen der Temperaturen im Kollektor, insbesondere der Erdoberfl{\"a}chentemperatur erreicht. Parameteranpassungen im W{\"a}rme{\"u}bergangsmodell und Widerstandsmodell f{\"u}hrten f{\"u}r vier ausgew{\"a}hlte, station{\"a}re Sonnenenergien auf eine gute {\"U}bereinstimmung zwischen den Ergebnissen (Temperaturhub, Druckentnahme, Leistung und Wirkungsgrad) des station{\"a}ren, hybriden Modells und des station{\"a}ren CFD-Modells. Weiterhin stimmen die lokalen Gr{\"o}ßen W{\"a}rme{\"u}bergangskoeffizient, Erdoberfl{\"a}chentemperatur, Lufttemperatur und Glasdachtemperatur gut zwischen den Modellen {\"u}berein. Mit dem CFD Modell wurden der Prototyp und 3 Großkraftwerke berechnet. Mit dem entwickelten instation{\"a}ren FDM-Modell wurden erstmalig numerische Langzeitsimulationen (1 Jahr) durchgef{\"u}hrt. Zur {\"U}berpr{\"u}fung des Modells wurden die Ergebnisse mit Messwerten aus Manzanares verglichen, wobei eine gute {\"U}bereinstimmung erreicht werden konnte. Das Verst{\"a}ndnis f{\"u}r die stattfindenden thermodynamischen und str{\"o}mungsmechanischen Prozesse in einem Aufwindkraftwerk konnte durch die Arbeit maßgeblich verbessert werden.}, subject = {Aufwindkraftwerk}, language = {de} }