@article{MosaviShamshirbandEsmaeilbeikietal., author = {Mosavi, Amir and Shamshirband, Shahaboddin and Esmaeilbeiki, Fatemeh and Zarehaghi, Davoud and Neyshabouri, Mohammadreza and Samadianfard, Saeed and Ghorbani, Mohammad Ali and Nabipour, Narjes and Chau, Kwok-Wing}, title = {Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths}, series = {Engineering Applications of Computational Fluid Mechanics}, volume = {2020}, journal = {Engineering Applications of Computational Fluid Mechanics}, number = {Volume 14, Issue 1}, doi = {10.1080/19942060.2020.1788644}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200911-42347}, pages = {939 -- 953}, abstract = {This research aims to model soil temperature (ST) using machine learning models of multilayer perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly optimization algorithm, i.e. MLP-FFA and SVM-FFA. In the current study, measured ST and meteorological parameters of Tabriz and Ahar weather stations in a period of 2013-2015 are used for training and testing of the studied models with one and two days as a delay. To ascertain conclusive results for validation of the proposed hybrid models, the error metrics are benchmarked in an independent testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that, in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. However, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of Tabriz station and ST10cm of Ahar station in comparison with SVM-FFA. Additionally, for all of the prescribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase was found to be meaningfully superior to the classical MLP and SVM models.}, subject = {Bodentemperatur}, language = {en} } @article{AbbaspourGilandehMolaeeSabzietal., author = {Abbaspour-Gilandeh, Yousef and Molaee, Amir and Sabzi, Sajad and Nabipour, Narjes and Shamshirband, Shahaboddin and Mosavi, Amir}, title = {A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars}, series = {agronomy}, volume = {2020}, journal = {agronomy}, number = {Volume 10, Issue 1, 117}, publisher = {MDPI}, doi = {10.3390/agronomy10010117}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200123-40695}, pages = {21}, abstract = {Due to the importance of identifying crop cultivars, the advancement of accurate assessment of cultivars is considered essential. The existing methods for identifying rice cultivars are mainly time-consuming, costly, and destructive. Therefore, the development of novel methods is highly beneficial. The aim of the present research is to classify common rice cultivars in Iran based on color, morphologic, and texture properties using artificial intelligence (AI) methods. In doing so, digital images of 13 rice cultivars in Iran in three forms of paddy, brown, and white are analyzed through pre-processing and segmentation of using MATLAB. Ninety-two specificities, including 60 color, 14 morphologic, and 18 texture properties, were identified for each rice cultivar. In the next step, the normal distribution of data was evaluated, and the possibility of observing a significant difference between all specificities of cultivars was studied using variance analysis. In addition, the least significant difference (LSD) test was performed to obtain a more accurate comparison between cultivars. To reduce data dimensions and focus on the most effective components, principal component analysis (PCA) was employed. Accordingly, the accuracy of rice cultivar separations was calculated for paddy, brown rice, and white rice using discriminant analysis (DA), which was 89.2\%, 87.7\%, and 83.1\%, respectively. To identify and classify the desired cultivars, a multilayered perceptron neural network was implemented based on the most effective components. The results showed 100\% accuracy of the network in identifying and classifying all mentioned rice cultivars. Hence, it is concluded that the integrated method of image processing and pattern recognition methods, such as statistical classification and artificial neural networks, can be used for identifying and classification of rice cultivars.}, subject = {Maschinelles Lernen}, language = {en} }