@article{IlyaniAkmarKramerRabczuk, author = {Ilyani Akmar, A.B. and Kramer, O. and Rabczuk, Timon}, title = {Multi-objective evolutionary optimization of sandwich structures: An evaluation by elitist non-dominated sorting evolution strategy}, series = {American Journal of Engineering and Applied Sciences}, journal = {American Journal of Engineering and Applied Sciences}, doi = {10.3844/ajeassp.2015.185.201}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170418-31402}, pages = {185 -- 201}, abstract = {In this study, an application of evolutionary multi-objective optimization algorithms on the optimization of sandwich structures is presented. The solution strategy is known as Elitist Non-Dominated Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems a compatible approach to resolve multi-objective optimization problems because it is inspired by natural evolution, which closely linked to Artificial Intelligence (AI) techniques and elitism has shown an important factor for improving evolutionary multi-objective search. In order to evaluate the notion of performance by ENSES, the well-known study case of sandwich structures are reconsidered. For Case 1, the goals of the multi-objective optimization are minimization of the deflection and the weight of the sandwich structures. The length, the core and skin thicknesses are the design variables of Case 1. For Case 2, the objective functions are the fabrication cost, the beam weight and the end deflection of the sandwich structures. There are four design variables i.e., the weld height, the weld length, the beam depth and the beam width in Case 2. Numerical results are presented in terms of Paretooptimal solutions for both evaluated cases.}, subject = {Optimierung}, language = {en} } @article{MortazaviPereiraJiangetal., author = {Mortazavi, Bohayra and Pereira, Luiz Felipe C. and Jiang, Jin-Wu and Rabczuk, Timon}, title = {Modelling heat conduction in polycrystalline hexagonal boron-nitride films}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep13228}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170425-31534}, abstract = {We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} }