@inproceedings{MoraisGeorgievSproessig, author = {Morais, Joao and Georgiev, Svetlin and Spr{\"o}ßig, Wolfgang}, title = {A NOTE ON THE CLIFFORD FOURIER-STIELTJES TRANSFORM}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2779}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27794}, pages = {13}, abstract = {The purpose of this article is to provide an overview of the real Clifford Fourier- Stieltjes transform (CFST) and of its important properties. Additionally, we introduce the definition of convolution of Clifford functions of bounded variation.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{NechytailoHorokhovKushchenko, author = {Nechytailo, Oleksandr and Horokhov, Yevgen and Kushchenko, Vladimir}, title = {ANALYSIS OF THE MODE OF DEFORMATION OF THE SUB-PULLEY STRUCTURES ON SHAFT SLOPING HEADGEAR STRUCTURES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2782}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27826}, pages = {16}, abstract = {A numerical analysis of the mode of deformation of the main load-bearing components of a typical frame sloping shaft headgear was performed. The analysis was done by a design model consisting of plane and solid finite elements, which were modeled in the program «LIRA». Due to the numerical results, the regularities of local stress distribution under a guide pulley bearing were revealed and parameters of a plane stress under both emergency and normal working loads were determined. In the numerical simulation, the guidelines to improve the construction of the joints of guide pulleys resting on sub-pulley frame-type structures were established. Overall, the results obtained are the basis for improving the engineering procedures of designing steel structures of shaft sloping headgear.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{JungMorgenthal, author = {Jung, Bastian and Morgenthal, Guido}, title = {ASSESSMENT OF INTEGRAL BRIDGES USING QUANTITATIVE MODEL EVALUATION}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2766}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27662}, pages = {10}, abstract = {Numerical simulations in the general field of civil engineering are common for the design process of structures and/or the assessment of existing buildings. The behaviour of these structures is analytically unknown and is approximated with numerical simulation methods like the Finite Element Method (FEM). Therefore the real structure is transferred into a global model (GM, e.g. concrete bridge) with a wide range of sub models (partial models PM, e.g. material modelling, creep). These partial models are coupled together to predict the behaviour of the observed structure (GM) under different conditions. The engineer needs to decide which models are suitable for computing realistically and efficiently the physical processes determining the structural behaviour. Theoretical knowledge along with the experience from prior design processes will influence this model selection decision. It is thus often a qualitative selection of different models. The goal of this paper is to present a quantitative evaluation of the global model quality according to the simulation of a bridge subject to direct loading (dead load, traffic) and indirect loading (temperature), which induce restraint effects. The model quality can be separately investigated for each partial model and also for the coupled partial models in a global structural model. Probabilistic simulations are necessary for the evaluation of these model qualities by using Uncertainty and Sensitivity Analysis. The method is applied to the simulation of a semi-integral concrete bridge with a monolithic connection between the superstructure and the piers, and elastomeric bearings at the abutments. The results show that the evaluation of global model quality is strongly dependent on the sensitivity of the considered partial models and their related quantitative prediction quality. This method is not only a relative comparison between different models, but also a quantitative representation of model quality using probabilistic simulation methods, which can support the process of model selection for numerical simulations in research and practice.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Schmeikal, author = {Schmeikal, Bernd Anton}, title = {BAUHAUS ISOMETRY AND FIELDS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2785}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27859}, pages = {9}, abstract = {While integration increases by networking, segregation strides ahead too. Most of us fixate our mind on special topics. Yet we are relying on our intuition too. We are sometimes waiting for the inflow of new ideas or valuable information that we hold in high esteem, although we are not entirely conscious of its origin. We may even say the most precious intuitions are rooting in deep subconscious, collective layers of the mind. Take as a simple example the emergence of orientation in paleolithic events and its relation to the dihedral symmetry of the compass. Consider also the extension of this algebraic matter into the operational structures of the mind on the one hand and into the algebra of geometry, Clifford algebra as we use to call it today, on the other. Culture and mind, and even the individual act of creation may be connected with transient events that are subconscious and inaccessible to cognition in principle. Other events causative for our work may be merely invisible too us, though in principle they should turn out attainable. In this case we are just ignorant of the whole creative process. Sometimes we begin to use unusual tools or turn into handicraft enthusiasts. Then our small institutes turn into workshops and factories. All this is indeed joining with the Bauhaus and its spirit. We shall go together into this, and we shall present a record of this session.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{SuzukiLawrynowiczNounoetal., author = {Suzuki, Osamu and Lawrynowicz, Julian and Nouno, Kiyoharu and Nagayama, Daiki}, title = {BINARY AND TERNARY CLIFFORD ANALYSIS ON NONION ALGEBRA AND SU(3)}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2788}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27880}, pages = {12}, abstract = {A concept of non-commutative Galois extension is introduced and binary and ternary extensions are chosen. Non-commutative Galois extensions of Nonion algebra and su(3) are constructed. Then ternary and binary Clifford analysis are introduced for non-commutative Galois extensions and the corresponding Dirac operators are associated.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{MoraisGeorgiev, author = {Morais, Joao and Georgiev, Svetlin}, title = {COMPLETE ORTHOGONAL SYSTEMS OF 3D SPHEROIDAL MONOGENICS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2778}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27785}, pages = {14}, abstract = {In this paper we review two distint complete orthogonal systems of monogenic polynomials over 3D prolate spheroids. The underlying functions take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4), and are generally assumed to be nullsolutions of the well known Riesz and Moisil Th{\´e}odoresco systems in R3. This will be done in the spaces of square integrable functions over R and H. The representations of these polynomials are explicitly given. Additionally, we show that these polynomial functions play an important role in defining the Szeg{\"o} kernel function over the surface of 3D spheroids. As a concrete application, we prove the explicit expression of the monogenic Szeg{\"o} kernel function over 3D prolate spheroids.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{CastilloPerezCedilloDiazKravchenkoetal., author = {Castillo-P{\´e}rez, Ra{\´u}l and Cedillo - D{\´i}az, A. del C. and Kravchenko, Vladislav and Oviedo - Galdeano, H.}, title = {COMPUTATION OF THE REFLECTANCE AND TRANSMITTANCE FOR AN INHOMOGENEOUS LAYERED MEDIUM WITH TURNING POINT S USING THE WKB AND SPPS METHODS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2759}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27598}, pages = {16}, abstract = {Electromagnetic wave propagation is currently present in the vast majority of situations which occur in veryday life, whether in mobile communications, DTV, satellite tracking, broadcasting, etc. Because of this the study of increasingly complex means of propagation of lectromagnetic waves has become necessary in order to optimize resources and increase the capabilities of the devices as required by the growing demand for such services. Within the electromagnetic wave propagation different parameters are considered that characterize it under various circumstances and of particular importance are the reflectance and transmittance. There are several methods or the analysis of the reflectance and transmittance such as the method of approximation by boundary condition, the plane wave expansion method (PWE), etc., but this work focuses on the WKB and SPPS methods. The implementation of the WKB method is relatively simple but is found to be relatively efficient only when working at high frequencies. The SPPS method (Spectral Parameter Powers Series) based on the theory of pseudoanalytic functions, is used to solve this problem through a new representation for solutions of Sturm Liouville equations and has recently proven to be a powerful tool to solve different boundary value and eigenvalue problems. Moreover, it has a very suitable structure for numerical implementation, which in this case took place in the Matlab software for the valuation of both conventional and turning points profiles. The comparison between the two methods allows us to obtain valuable information about their perfor mance which is useful for determining the validity and propriety of their application for solving problems where these parameters are calculated in real life applications.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Wudtke, author = {Wudtke, Idna}, title = {CONSTITUTIVE MODELING OF CRYSTALLINE MATERIALS WITH TEXTURE CHARACTERISTICS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2791}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27910}, pages = {9}, abstract = {The analysis of the response of complex structural systems requires the description of the material constitutive relations by means of an appropriate material model. The level of abstraction of such model may strongly affect the quality of the prognosis of the whole structure. In context to this fact, it is necessary to describe the material in a convenient sense as exact but as simple as possible. All material phenomena of crystalline materials e.g. steel, affecting the behavior of the structure, rely on physical effects which are interacting over spatial scales from subatomic to macroscopic range. Nevertheless, if the material is microscopically heterogenic, it might be appropriate to use phenomenological models for the purpose of civil engineering. Although constantly applied, these models are insufficient for steel materials with microscopic characteristics such as texture, typically occurring in hot rolled steel members or heat affected zones of welded joints. Hence, texture is manifested in crystalline materials as a regular crystallographic structure and crystallite orientation, influencing macroscopic material properties. The analysis of structural response of material with texture (e.g. rolled steel or heat affected zone of a welded joint) obliges the extension of the phenomenological material description of macroscopic scale by means of microscopic information. This paper introduces an enrichment approach for material models based on a hierarchical multiscale methodology. This has been done by describing the grain texture on a mesoscopic scale and coupling it with macroscopic constitutive relations by means of homogenization. Due to a variety of available homogenization methods, the question of an assessment of coupling quality arises. The applicability of the method and the effect of the coupling method on the reliability of the response are presented on an example.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Karaki, author = {Karaki, Ghada}, title = {DEPENDENCY OF THE INFLUENCE OF INPUT PARAMETERS OF BVI MODELS ON THE INITIAL EXCITATIONS AND SPEED RANGES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2767}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27675}, pages = {13}, abstract = {Bridge vibration due to traffic loading has been subject of extensive research in the last decades. Such studies are concerned with deriving solutions for the bridge-vehicle interaction (BVI) and analyzing the dynamic responses considering randomness of the coupled model's (BVI) input parameters and randomness of road unevenness. This study goes further to examine the effects of such randomness of input parameters and processes on the variance of dynamic responses in quantitative measures. The input parameters examined in the sensitivity analysis are, stiffness and damping of vehicle's suspension system, axle spacing, and stiffness and damping of bridge. This study also examines the effects of the initial excitation of a vehicle on the influences of the considered input parameters. Variance based sensitivity analysis is often applied to deterministic models. However, the models for the dynamic problem is a stochastic one due to the simulations of the random processes. Thus, a setting using a joint meta-model; one for the mean response and other for the dispersion of the response is developed. The joint model is developed within the framework of Generalized Linear Models (GLM). An enhancement of the GLM procedure is suggested and tested; this enhancement incorporates Moving Least Squares (MLS) approximation algorithms in the fitting of the mean component of the joint model. The sensitivity analysis is then performed on the joint-model developed for the dynamic responses caused by BVI.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{MusialKamińskiUbysz, author = {Musial, Michal and Kamiński, Mieczysław and Ubysz, Andrzej}, title = {DISCRETE CRACK MODEL OF BORCZ FOR CALCULATING THE DEFLECTIONS OF BENDING REINFORCED CONCRETE BEAM}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2790}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27907}, pages = {11}, abstract = {In the design of the reinforced concrete beams loaded by the bending moment, it is assumed that the structure can be used at a level of load, that there are local discontinuities - cracks. Designing the element demands checking two limit states of construction, load capacity and usability. Limit states usability include also the deflection of the element. Deflections in the reinforced concrete beams with cracks are based on actual rigidity of the element. After cracking there is a local change in rigidity of the beam. The rigidity is variable in the element's length and due to the heterogeneous structure of concrete, it is not possible to clearly describe those changes. Most standards of testing methods tend to simplify the calculations and take the average value of the beam's rigidity on its entire length. The rigidity depends on the level of the maximal load of the beam. Experimental researches verify the value by inserting the coefficients into the formulas used in the theory of elasticity. The researches describe the changes in rigidity in the beam's length more precisely. The authors take into consideration the change of rigidity, depending on the level of maximum load (continuum models), or localize the changes in rigidity in the area of the cracks (discrete models). This paper presents one of the discrete models. It is distinguished by the fact that the left side of the differential equation, that depends on the rigidity, is constant, and all effects associated with the scratches are taken as the external load and placed on the right side of the equation. This allows to generalize the description. The paper presents a particular integral of the differential equation, which allow analyzing the displacement and vibration for different rigidity of the silo's walls, the flow rate and type of the flowing material.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{StutzWuttke, author = {Stutz, Henning and Wuttke, Frank}, title = {EVALUATION OF SOIL-STRUCTURE INTERACTION MODELS USING DIFFERENT MODEL-ROBUSTNESS APPROACHES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2787}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27878}, pages = {15}, abstract = {The aim of this study is to show an application of model robustness measures for soilstructure interaction (henceforth written as SSI) models. Model robustness defines a measure for the ability of a model to provide useful model answers for input parameters which typically have a wide range in geotechnical engineering. The calculation of SSI is a major problem in geotechnical engineering. Several different models exist for the estimation of SSI. These can be separated into analytical, semi-analytical and numerical methods. This paper focuses on the numerical models of SSI specific macro-element type models and more advanced finite element method models using contact description as continuum or interface elements. A brief description of the models used is given in the paper. Following this description, the applied SSI problem is introduced. The observed event is a static loaded shallow foundation with an inclined load. The different partial models to consider the SSI effects are assessed using different robustness measures during numerical application. The paper shows the investigation of the capability to use these measures for the assessment of the model quality of SSI partial models. A variance based robustness and a mathematical robustness approaches are applied. These different robustness measures are used in a framework which allows also the investigation of computational time consuming models. Finally the result shows that the concept of using robustness approaches combined with other model-quality indicators (e.g. model sensitivity or model reliability) can lead to unique model-quality assessment for SSI models.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{DeAguinaga, author = {De Aguinaga, Jos{\´e} Guillermo}, title = {INFLUENCE OF DIFFERENT DATA TYPES FOR THE ESTIMATION OF HYDROMECHANICAL PARAMETERS FOR A WATER RETAINING DAM USING SYNTHETIC DATA}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2760}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27607}, pages = {12}, abstract = {The present research analyses the error on prediction obtained under different data availability scenarios to determine which measurements contribute to an improvement of model prognosis and which not. A fully coupled 2D hydromechanical model of a water retaining dam is taken as an example. Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water pressure under drawdown conditions. Relevant model parameters are ranked by scaled sensitivities, Particle Swarm Optimization is applied to determine the optimal parameter values and model validation is performed to determine the magnitude of error forecast. We compare the predictions of the optimized models with results from a forward run of the reference model to obtain actual prediction errors. The analyses presented here were performed to 31 data sets of 100 observations of varying data types. Calibrating with multiple information types instead of only one sort, brings better calibration results and improvement in model prognosis. However, when using several types of information the number of observations have to be increased to be able to cover a representative part of the model domain; otherwise a compromise between data availability and domain coverage prove best. Which type of information for calibration contributes to the best prognoses, could not be determined in advance. For the error in model prognosis does not depends on the error in calibration, but on the parameter error, which unfortunately can not be determined in reality since we do not know its real value. Excellent calibration fits with parameters' values near the limits of reasonable physical values, provided the highest prognosis errors. While models which included excess pore pressure values for calibration provided the best prognosis, independent of the calibration fit.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{OPUS4-2457, title = {International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2457}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150916-24571}, pages = {434}, abstract = {The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Eriksson, author = {Eriksson, Sirkka-Liisa}, title = {MEAN VALUE PROPERTIES FOR THE WEINSTEIN EQUATION AND MODIFIED DIRAC OPERATORS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2762}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27621}, pages = {16}, abstract = {We study the Weinstein equation u on the upper half space R3+. The Weinstein equation is connected to the axially symmetric potentials. We compute solutions of the Weinstein equation depending on the hyperbolic distance and x2. These results imply the explicit mean value properties. We also compute the fundamental solution. The main tools are the hyperbolic metric and its invariance properties.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{AbbasMorgenthal, author = {Abbas, Tajammal and Morgenthal, Guido}, title = {Model combinations for assessing the flutter stability of suspension bridges}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2757}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27574}, pages = {11}, abstract = {Long-span cable supported bridges are prone to aerodynamic instabilities caused by wind and this phenomenon is usually a major design criterion. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary therefore requires accurate and robust models. This paper aims at studying various combinations of models to predict the flutter phenomenon. Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the hybrid model. Models for aerodynamic forces employed are the analytical Theodorsen expressions for the motion-enduced aerodynamic forces of a flat plate and Scanlan derivatives as a Meta model. Further, Computational Fluid Dynamics (CFD) simulations using the Vortex Particle Method (VPM) were used to cover numerical models. The structural representations were dimensionally reduced to two degree of freedom section models calibrated from global models as well as a fully three-dimensional Finite Element (FE) model. A two degree of freedom system was analysed analytically as well as numerically. Generally, all models were able to predict the flutter phenomenon and relatively close agreement was found for the particular bridge. In conclusion, the model choice for a given practical analysis scenario will be discussed in the context of the analysis findings.}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{MusialUbyszUlatowski, author = {Musial, Michal and Ubysz, Andrzej and Ulatowski, Piotr}, title = {MODEL DESCRIBING STATIC AND DYNAMIC DISPLACEMENTS OF SILOS WALL DURING THE FLOW OF LOOSE MATERIAL}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2789}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27896}, pages = {16}, abstract = {Correct evaluation of wall displacements is a key matter when designing silos. This issue is important from both the standpoint of design engineer (load-bearing capacity of structures) and end-consumer (durability of structures). Commonplace methods of silo design mainly focus on satisfying limit states of load-bearing capacity. Current standards fail to specify methods of dynamic displacements analysis. Measurements of stressacting on silo walls prove that the actual stress is sum of static and dynamic stresses. Janssen came up with differential equation describing state of static equilibrium in cross-section of a silo. By solving the equation static stress of granular solid on silo walls can be determined. Equations of motion were determined from equilibrium equations of feature objects. General solution, describing dynamic stresses was presented as parametric model. This paper presents particular integrals of differential equation, which enable analysing displacements and vibrations for different rigidities of silo walls, types of granular solid and its flow rate.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{MarzbanSchwarz, author = {Marzban, Samira and Schwarz, Jochen}, title = {MODEL QUALITY EVALUATION OF COUPLED RC FRAME-WALL SYSTEMS FOR GLOBAL DAMAGE ASSESSMENT}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2776}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27769}, pages = {14}, abstract = {Civil engineers take advantage of models to design reliable structures. In order to fulfill the design goal with a certain amount of confidence, the utilized models should be able to predict the probable structural behavior under the expected loading schemes. Therefore, a major challenge is to find models which provide less uncertain and more robust responses. The problem gets even twofold when the model to be studied is a global model comprised of different interacting partial models. This study aims at model quality evaluation of global models with a focus on frame-wall systems as the case study. The paper, presents the results of the first step taken toward accomplishing this goal. To start the model quality evaluation of the global frame-wall system, the main element (i.e. the wall) was studied through nonlinear static and dynamic analysis using two different modeling approaches. The two selected models included the fiber section model and the Multiple-Vertical-Line-Element-Model (MVLEM). The influence of the wall aspect ratio (H=L) and the axial load on the response of the models was studied. The results from nonlinear static and dynamic analysis of both models are presented and compared. The models resulted in quite different responses in the range of low aspect ratio walls under large axial loads due to different contribution of the shear deformations to the top displacement. In the studied cases, the results implied that careful attention should be paid to the model quality evaluation of the wall models specifically when they are supposed to be coupled to other partial models such as a moment frame or a soil-footing substructure which their response is sensitive to shear deformations. In this case, even a high quality wall model would not result in a high quality coupled system since it fails to interact properly with the rest of the system.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{GonzalezCalvet, author = {Gonzalez Calvet, Ramon}, title = {NEW FOUNDATIONS FOR GEOMETRIC ALGEBRA}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2764}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27644}, pages = {12}, abstract = {New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea that Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n×n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multilinear quantities.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Simsek, author = {Simsek, Yilmaz}, title = {ON INTERPOLATION FUNCTION OF THE BERNSTEIN POLYNOMIALS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2786}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27867}, pages = {8}, abstract = {The Bernstein polynomials are used for important applications in many branches of Mathematics and the other sciences, for instance, approximation theory, probability theory, statistic theory, num- ber theory, the solution of the di\ierential equations, numerical analysis, constructing Bezier curves, q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are used to construct Bezier curves. Bezier was an engineer with the Renault car company and set out in the early 1960's to develop a curve formulation which would lend itself to shape design. Engineers may …nd it most understandable to think of Bezier curves in terms of the center of mass of a set of point masses. Therefore, in this paper, we study on generating functions and functional equations for these polynomials. By applying these functions, we investigate interpolation function and many properties of these polynomials.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{NguyenGuerlebeck, author = {Nguyen, Manh Hung and G{\"u}rlebeck, Klaus}, title = {ON M-CONFORMAL MAPPINGS AND GEOMETRIC PROPERTIES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2783}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27833}, pages = {7}, abstract = {Monogenic functions play a role in quaternion analysis similarly to that of holomorphic functions in complex analysis. A holomorphic function with nonvanishing complex derivative is a conformal mapping. It is well-known that in Rn+1, n ≥ 2 the set of conformal mappings is restricted to the set of M{\"o}bius transformations only and that the M{\"o}bius transformations are not monogenic. The paper deals with a locally geometric mapping property of a subset of monogenic functions with nonvanishing hypercomplex derivatives (named M-conformal mappings). It is proved that M-conformal mappings orthogonal to all monogenic constants admit a certain change of solid angles and vice versa, that change can characterize such mappings. In addition, we determine planes in which those mappings behave like conformal mappings in the complex plane.}, subject = {Angewandte Informatik}, language = {en} }