@article{NguyenXuanNguyenBordasetal., author = {Nguyen-Xuan, Hung and Nguyen, Hiep Vinh and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon and Duflot, Marc}, title = {A cell-based smoothed finite element method for three dimensional solid structures}, series = {KSCE Journal of Civil Engineering}, journal = {KSCE Journal of Civil Engineering}, doi = {10.1007/s12205-012-1515-7}, pages = {1230 -- 1242}, abstract = {This paper extends further the strain smoothing technique in finite elements to 8-noded hexahedral elements (CS-FEM-H8). The idea behind the present method is similar to the cell-based smoothed 4-noded quadrilateral finite elements (CS-FEM-Q4). In CSFEM, the smoothing domains are created based on elements, and each element can be further subdivided into 1 or several smoothing cells. It is observed that: 1) The CS-FEM using a single smoothing cell can produce higher stress accuracy, but insufficient rank and poor displacement accuracy; 2) The CS-FEM using several smoothing cells has proper rank, good displacement accuracy, but lower stress accuracy, especially for nearly incompressible and bending dominant problems. We therefore propose 1) an extension of strain smoothing to 8-noded hexahedral elements and 2) an alternative CS-FEM form, which associates the single smoothing cell issue with multi-smoothing cell one via a stabilization technique. Several numerical examples are provided to show the reliability and accuracy of the present formulation.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoWangJiangetal., author = {Zhao, Jun-Hua and Wang, L. and Jiang, Jin-Wu and Wang, Z. and Guo, Wanlin and Rabczuk, Timon}, title = {A comparative study of two molecular mechanics models based on harmonic potentials}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, abstract = {A comparative study of two molecular mechanics models based on harmonic potentials}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiSilaniBordasetal., author = {Talebi, Hossein and Silani, Mohammad and Bordas, St{\´e}phane Pierre Alain and Kerfriden, Pierre and Rabczuk, Timon}, title = {A computational library for multiscale modeling of material failure}, series = {Computational Mechanics}, journal = {Computational Mechanics}, abstract = {A computational library for multiscale modeling of material failure}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhuangHuangRabczuketal., author = {Zhuang, Xiaoying and Huang, Runqiu and Rabczuk, Timon and Liang, C.}, title = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, abstract = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangWangLahmeretal., author = {Zhang, Chao and Wang, Cuixia and Lahmer, Tom and He, Pengfei and Rabczuk, Timon}, title = {A dynamic XFEM formulation for crack identification}, series = {International Journal of Mechanics and Materials in Design}, journal = {International Journal of Mechanics and Materials in Design}, pages = {427 -- 448}, abstract = {A dynamic XFEM formulation for crack identification}, subject = {Angewandte Mathematik}, language = {en} } @article{YangBudarapuMahapatraetal., author = {Yang, Shih-Wei and Budarapu, Pattabhi Ramaiah and Mahapatra, D.R. and Bordas, St{\´e}phane Pierre Alain and Zi, Goangseup and Rabczuk, Timon}, title = {A Meshless Adaptive Multiscale Method for Fracture}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {382 -- 395}, abstract = {A Meshless Adaptive Multiscale Method for Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenXuanRabczukNguyenThanhetal., author = {Nguyen-Xuan, Hung and Rabczuk, Timon and Nguyen-Thanh, Nhon and Nguyen-Thoi, T. and Bordas, St{\´e}phane Pierre Alain}, title = {A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates}, series = {Computational Mechanics}, journal = {Computational Mechanics}, pages = {679 -- 701}, abstract = {A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates}, subject = {Angewandte Mathematik}, language = {en} } @article{JiaZhangRabczuk, author = {Jia, Yue and Zhang, Yongjie and Rabczuk, Timon}, title = {A Novel Dynamic Multilevel Technique for Image Registration}, series = {Computers and Mathematics with Applications}, journal = {Computers and Mathematics with Applications}, abstract = {A Novel Dynamic Multilevel Technique for Image Registration}, subject = {Angewandte Mathematik}, language = {en} } @article{KerfridenGouryRabczuketal., author = {Kerfriden, Pierre and Goury, O. and Rabczuk, Timon and Bordas, St{\´e}phane Pierre Alain}, title = {A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {169 -- 188}, abstract = {A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics}, subject = {Angewandte Mathematik}, language = {en} } @article{SilaniZiaeiRadTalebietal., author = {Silani, Mohammad and Ziaei-Rad, S. and Talebi, Hossein and Rabczuk, Timon}, title = {A Semi-Concurrent Multiscale Approach for Modeling Damage in Nanocomposites}, series = {Theoretical and Applied Fracture Mechanics}, journal = {Theoretical and Applied Fracture Mechanics}, abstract = {A Semi-Concurrent Multiscale Approach for Modeling Damage in Nanocomposites}, subject = {Angewandte Mathematik}, language = {en} } @article{AreiasRabczukCesardeSaetal., author = {Areias, Pedro and Rabczuk, Timon and Cesar de Sa, J.M. and Jorge, R.N.}, title = {A semi-implicit _nite strain shell algorithm using in-plane strains based on least-squares}, series = {Computational Mechanics}, journal = {Computational Mechanics}, abstract = {A semi-implicit _nite strain shell algorithm using in-plane strains based on least-squares}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiZiSilanietal., author = {Talebi, Hossein and Zi, Goangseup and Silani, Mohammad and Samaniego, Esteban and Rabczuk, Timon}, title = {A simple circular cell method for multilevel finite element analysis}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2012/526846}, abstract = {A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed.}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThanhThaiHoangNguyenXuanetal., author = {Nguyen-Thanh, Nhon and Thai-Hoang, C. and Nguyen-Xuan, Hung and Rabczuk, Timon}, title = {A smoothed finite element method for the static and free vibration analysis of shells}, series = {Journal of Civil Engineering and Architecture}, journal = {Journal of Civil Engineering and Architecture}, pages = {13 -- 25}, abstract = {A smoothed finite element method for the static and free vibration analysis of shells}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerZhuangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhuang, Xiaoying and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, series = {Advances in Engineering Software}, journal = {Advances in Engineering Software}, pages = {19 -- 31}, abstract = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangRabczukPark, author = {Jiang, Jin-Wu and Rabczuk, Timon and Park, Harold S.}, title = {A Stillinger-Weber Potential for Single-Layer Black Phosphorus, and the Importance of Cross-Pucker Interactions for Negative Poisson's Ratio and Edge Stress-Induced Bending}, series = {Nanoscale}, journal = {Nanoscale}, doi = {10.1039/C4NR07341J}, abstract = {The distinguishing structural feature of single-layered black phosphorus is its puckered structure, which leads to many novel physical properties. In this work, we first present a new parameterization of the Stillinger-Weber potential for single-layered black phosphorus. In doing so, we reveal the importance of a cross-pucker interaction term in capturing its unique mechanical properties, such as a negative Poisson's ratio. In particular, we show that the cross-pucker interaction enables the pucker to act as a re-entrant hinge, which expands in the lateral direction when it is stretched in the longitudinal direction. As a consequence, single-layered black phosphorus has a negative Poisson's ratio in the direction perpendicular to the atomic plane. As an additional demonstration of the impact of the cross-pucker interaction, we show that it is also the key factor that enables capturing the edge stress-induced bending of single-layered black phosphorus that has been reported in ab initio calculations.}, subject = {Angewandte Mathematik}, language = {en} } @article{GhorashiLahmerBagherzadehetal., author = {Ghorashi, Seyed Shahram and Lahmer, Tom and Bagherzadeh, Amir Saboor and Zi, Goangseup and Rabczuk, Timon}, title = {A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials}, series = {Engineering Geology}, journal = {Engineering Geology}, abstract = {A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangParkGalletal., author = {Jiang, Jin-Wu and Park, Harold S. and Gall, K. and Leach, A. and Rabczuk, Timon}, title = {A Surface Stacking Fault Energy Approach to Predicting Defect Nucleation in Surface-Dominated Nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, abstract = {A Surface Stacking Fault Energy Approach to Predicting Defect Nucleation in Surface-Dominated Nanostructures}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoJiangJiaetal., author = {Zhao, Jun-Hua and Jiang, Jin-Wu and Jia, Yue and Guo, Wanlin and Rabczuk, Timon}, title = {A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates}, series = {Carbon}, journal = {Carbon}, doi = {10.1016/j.carbon.2013.01.041}, pages = {108 -- 119}, abstract = {Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. The dependence of the cohesive energy on their size, spacing and crossing angles is analyzed. Checking against full atom molecular dynamics calculations and available experimental results shows that the continuum solution has high accuracy. The equilibrium distances between the nanotubes, graphene and substrates with minimum cohesive energy are also provided explicitly. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and substrates, and designing composites and nanoelectromechanical systems.}, subject = {Angewandte Mathematik}, language = {en} } @article{SilaniTalebiZiaeiRadetal., author = {Silani, Mohammad and Talebi, Hossein and Ziaei-Rad, S. and Hamouda, A.M.S. and Zi, Goangseup and Rabczuk, Timon}, title = {A three dimensional Extended Arlequin Method for Dynamic Fracture}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {425 -- 431}, abstract = {A three dimensional Extended Arlequin Method for Dynamic Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacSilaniLahmeretal., author = {Vu-Bac, N. and Silani, Mohammad and Lahmer, Tom and Zhuang, Xiaoying and Rabczuk, Timon}, title = {A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs)}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {520 -- 535}, abstract = {A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs)}, subject = {Angewandte Mathematik}, language = {en} }