@article{BucherMost, author = {Bucher, Christian and Most, Thomas}, title = {A comparison of approximate response functions in structural reliability analysis}, series = {Probabilistic Engineering Mechanics}, journal = {Probabilistic Engineering Mechanics}, pages = {154 -- 163}, abstract = {A comparison of approximate response functions in structural reliability analysis}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions}, series = {Structural Engineering and Mechanics}, journal = {Structural Engineering and Mechanics}, pages = {315 -- 332}, abstract = {A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions}, subject = {Angewandte Mathematik}, language = {en} } @article{BrehmZabelBucher, author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian}, title = {An automatic mode pairing strategy using an enhanced modal assurance citerion based on modal strain energies}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, doi = {10.1016/j.jsv.2010.07.006}, pages = {5375 -- 5392}, abstract = {In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion.}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucherSchorling, author = {Most, Thomas and Bucher, Christian and Schorling, York}, title = {Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, pages = {381 -- 400}, abstract = {Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization}, series = {International Journal for Numerical and Analytical Methods in Geomechanics}, journal = {International Journal for Numerical and Analytical Methods in Geomechanics}, pages = {285 -- 305}, abstract = {Energy-based simulation of concrete cracking using an improved mixed-mode cohesive crack model within a meshless discretization}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares}, series = {Engineering Analysis with Boundary Elements}, journal = {Engineering Analysis with Boundary Elements}, pages = {461 -- 470}, abstract = {New concepts for moving least squares: An interpolating non-singular weighting function and weighted nodal least squares}, subject = {Angewandte Mathematik}, language = {en} } @article{BucherEbert, author = {Bucher, Christian and Ebert, Matthias}, title = {Nichtlineare Berechnung von Stahlflanschverbindungen mit gemessenen Imperfektionen}, series = {Stahlbau}, journal = {Stahlbau}, pages = {516 -- 522}, abstract = {Nichtlineare Berechnung von Stahlflanschverbindungen mit gemessenen Imperfektionen}, subject = {Angewandte Mathematik}, language = {de} } @article{KirichukMostBucher, author = {Kirichuk, A. and Most, Thomas and Bucher, Christian}, title = {Numerical nonlinear analysis of kinematically excited shells}, series = {International Journal for Computational Civil and Structural Engineering}, journal = {International Journal for Computational Civil and Structural Engineering}, pages = {61 -- 74}, abstract = {Numerical nonlinear analysis of kinematically excited shells}, subject = {Angewandte Mathematik}, language = {en} } @article{BucherPham, author = {Bucher, Christian and Pham, Hoang Anh}, title = {On model updating of existing structures utilizing measured dynamic responses}, series = {Structure and Infrastructure Engineering}, journal = {Structure and Infrastructure Engineering}, pages = {135 -- 143}, abstract = {On model updating of existing structures utilizing measured dynamic responses}, subject = {Angewandte Mathematik}, language = {en} } @article{BrehmZabelBucher, author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian}, title = {Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study}, series = {Mechanical Systems and Signal Processing}, journal = {Mechanical Systems and Signal Processing}, abstract = {Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study}, subject = {Angewandte Mathematik}, language = {en} } @article{BucherFrangopol, author = {Bucher, Christian and Frangopol, D.M.}, title = {Optimization of lifetime maintenance strategies for deteriorting structures considering probabilities of violating safety, condition, and cost thresholds}, series = {Probabilistic Engineering Mechanics}, journal = {Probabilistic Engineering Mechanics}, pages = {1 -- 8}, abstract = {Optimization of lifetime maintenance strategies for deteriorting structures considering probabilities of violating safety, condition, and cost thresholds}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Probabilistic analysis of concrete cracking using neural networks and random fields}, series = {Probabilistic Engineering Mechanics}, journal = {Probabilistic Engineering Mechanics}, pages = {219 -- 229}, abstract = {Probabilistic analysis of concrete cracking using neural networks and random fields}, subject = {Angewandte Mathematik}, language = {en} } @article{MostBucher, author = {Most, Thomas and Bucher, Christian}, title = {Stochastic simulation of cracking in concrete structures using multi-parameter random fields}, series = {International Journal of Reliability and Safety}, journal = {International Journal of Reliability and Safety}, pages = {168 -- 187}, abstract = {Stochastic simulation of cracking in concrete structures using multi-parameter random fields}, subject = {Angewandte Mathematik}, language = {en} }