@inproceedings{StackManzoorMenzeletal., author = {Stack, Paul and Manzoor, Farhan and Menzel, Karsten and Cahill, Brian}, title = {A SERVICE ORIENTED ARCHITECTURE FOR BUILDING PERFORMANCE MONITORING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2893}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28935}, pages = {18}, abstract = {Information technology plays a key role in the everyday operation of buildings and campuses. Many proprietary technologies and methodologies can assist in effective Building Performance Monitoring (BPM) and efficient managing of building resources. The integration of related tools like energy simulator packages, facility, energy and building management systems, and enterprise resource planning systems is of benefit to BPM. However, the complexity to integrating such domain specific systems prevents their common usage. Service Oriented Architecture (SOA) has been deployed successfully in many large multinational companies to create integrated and flexible software systems, but so far this methodology has not been applied broadly to the field of BPM. This paper envisions that SOA provides an effective integration framework for BPM. Service oriented architecture for the ITOBO framework for sustainable and optimised building operation is proposed and an implementation for a building performance monitoring system is introduced.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{CacaoConstalesKrausshar, author = {Cacao, Isabel and Constales, Denis and Kraußhar, Rolf S{\"o}ren}, title = {A UNIFIED APPROACH FOR THE TREATMENT OF SOME HIGHER DIMENSIONAL DIRAC TYPE EQUATIONS ON SPHERES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2834}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28343}, pages = {8}, abstract = {Using Clifford analysis methods, we provide a unified approach to obtain explicit solutions of some partial differential equations combining the n-dimensional Dirac and Euler operators, including generalizations of the classical time-harmonic Maxwell equations. The obtained regular solutions show strong connections between hypergeometric functions and homogeneous polynomials in the kernel of the Dirac operator.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{SharmakScherer, author = {Sharmak, Wael and Scherer, Raimar J.}, title = {ADAPTABLE PROJECT MANAGEMENT PLANS USING CHANGE TEMPLATES-BASED APPROACH}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2888}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28886}, pages = {14}, abstract = {The uncertainty existing in the construction industry is bigger than in other industries. Consequently, most construction projects do not go totally as planned. The project management plan needs therefore to be adapted repeatedly within the project lifecycle to suit the actual project conditions. Generally, the risks of change in the project management plan are difficult to be identified in advance, especially if these risks are caused by unexpected events such as human errors or changes in the client preferences. The knowledge acquired from different resources is essential to identify the probable deviations as well as to find proper solutions to the faced change risks. Hence, it is necessary to have a knowledge base that contains known solutions for the common exceptional cases that may cause changes in each construction domain. The ongoing research work presented in this paper uses the process modeling technique of Event-driven Process Chains to describe different patterns of structure changes in the schedule networks. This results in several so called "change templates". Under each template different types of change risk/ response pairs can be categorized and stored in a knowledge base. This knowledge base is described as an ontology model populated with reference construction process data. The implementation of the developed approach can be seen as an iterative scheduling cycle that will be repeated within the project lifecycle as new change risks surface. This can help to check the availability of ready solutions in the knowledge base for the situation at hand. Moreover, if the solution is adopted, CPSP, "Change Project Schedule Plan „a prototype developed for the purpose of this research work, will be used to make the needed structure changes of the schedule network automatically based on the change template. What-If scenarios can be implemented using the CPSP prototype in the planning phase to study the effect of specific situations without endangering the success of the project objectives. Hence, better designed and more maintainable project schedules can be achieved.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{ZeiserDahmenRohwedderetal., author = {Zeiser, Andreas and Dahmen, W. and Rohwedder, T. and Schneider, R.}, title = {ADAPTIVE EIGENVALUE COMPUTATION FOR ELLIPTIC OPERATORS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2904}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-29042}, pages = {14}, abstract = {We present recent developments of adaptive wavelet solvers for elliptic eigenvalue problems. We describe the underlying abstract iteration scheme of the preconditioned perturbed iteration. We apply the iteration to a simple model problem in order to identify the main ideas which a numerical realization of the abstract scheme is based upon. This indicates how these concepts carry over to wavelet discretizations. Finally we present numerical results for the Poisson eigenvalue problem on an L-shaped domain.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{CastilloPerez, author = {Castillo-P{\´e}rez, Ra{\´u}l}, title = {AN APPLICATION OF FORMAL POWER SERIES FOR THE DEVELOPMENT OF OPTICAL FILTERS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2835}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28354}, pages = {8}, abstract = {The application of a recent method using formal power series is proposed. It is based on a new representation for solutions of Sturm-Liouville equations. This method is used to calculate the transmittance and reflectance coefficients of finite inhomogeneous layers with high accuracy and efficiency. Tailoring the refraction index profile defining the inhomogeneous media it is possible to develop very important applications such as optical filters. A number of profiles were evaluated and then some of them selected in order to perform an improvement of their characteristics via the modification of their profiles.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{BertholdMilbradt, author = {Berthold, Tim and Milbradt, Peter}, title = {ARTIFICIAL NEURONAL NETWORKS IN ENVIRONMENTAL ENGINEERING: THEORY AND APPLICATIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2830}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28304}, pages = {14}, abstract = {Models in the context of engineering can be classified in process based and data based models. Whereas the process based model describes the problem by an explicit formulation, the data based model is often used, where no such mapping can be found due to the high complexity of the problem. Artificial Neuronal Networks (ANN) is a data based model, which is able to "learn" a mapping from a set of training patterns. This paper deals with the application of ANN in time dependent bathymetric models. A bathymetric model is a geometric representation of the sea bed. Typically, a bathymetry is been measured and afterwards described by a finite set of measured data. Measuring at different time steps leads to a time dependent bathymetric model. To obtain a continuous surface, the measured data has to be interpolated by some interpolation method. Unlike the explicitly given interpolation methods, the presented time dependent bathymetric model using an ANN trains the approximated surface in space and time in an implicit way. The ANN is trained by topographic measured data, which consists of the location (x,y) and time t. In other words the ANN is trained to reproduce the mapping h = f(x,y,t) and afterwards it is able to approximate the topographic height for a given location and date. In a further step, this model is extended to take meteorological parameters into account. This leads to a model of more predictive character.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{RueppelAbolghasemzadeh, author = {R{\"u}ppel, Uwe and Abolghasemzadeh, Puyan}, title = {BIM-BASED IMMERSIVE EVACUATION SIMULATIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2884}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28845}, pages = {9}, abstract = {The changed global security situation in the last eight years has shown the importance of emergency management plans in public buildings. Therefore, the use of computer simulators for surveying fire safety design and evacuation process is increasing. The aim of these simulators is to have more realistic evacuation simulations. The challenge is, firstly, to realize the virtual simulation environment based on geometrical and material boundary conditions, secondly, to considerate the mutual interaction effects between different parameters and, finally, to have a realistic visualization of the simulated results. In order to carry out this task, an especial new software method on a BIM-platform has to be developed which can integrate all required simulations and will be able to have an immersive output BIM ISEE (Immersive Safety Engineering Environment). The new BIM-ISEE will integrate the Fire Dynamics Simulator (FDS) for fire and evacuation simulation in the Autodesk Revit which is a BIM-platform and will represent the simulation results in the immersive virtual environment at the institute (CES-Lab). With BIM-ISEE the fire safety engineer will be able to obtain more realistic visualizations in the immersive environment, to modify his concept more effectively, to evaluate the simulation results more accurately and to visualize the various simulation results. It can also give the rescue staff the opportunity to perform and evaluate emergency evacuation trainings.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{SampaioFerreiraRosario, author = {Sampaio, Alcinia Zita and Ferreira, Miguel M. and Ros{\´a}rio, Daniel P.}, title = {BUILDING FACILITIES MANAGEMENT SUPPORT ON VIRTUAL INTERACTIVE MODEL: THE LIGHTING COMPONENT}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2885}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28858}, pages = {12}, abstract = {The main aim of the research project in progress is to develop virtual models as tools to support decision-making in the planning of construction maintenance. The virtual models gives the capacity to allow them to transmit, visually and interactively, information related to the physical behaviour of materials, components of given infrastructures, defined as a function of the time variable. The interactive application allows decisions to be made on conception options in the definition of plans for maintenance, conservation or rehabilitation. The first virtual prototype that is now in progress concerns just lamps. It allows the examination of the physical model, visualizing, for each element modelled in 3D and linked to a database, the corresponding technical information concerned with the wear and tear aspects of the material, calculated for that period of time. In addition, the analysis of solutions for repair work or substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The aim is that the virtual model should be able to be applied directly over the 3D models of new constructions, in situations of rehabilitation. The practical usage of these models is directed, then, towards supporting decision-making in the conception phase and the planning of maintenance. In further work other components will be analysed and incorporated into the virtual system.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{SikiwatBreidtHartmann, author = {Sikiwat, Tanongsak and Breidt, Michael and Hartmann, Dietrich}, title = {COMPUTATIONAL STEERING FOR COLLAPSE SIMULATION OF LARGE SCALE COMPLEX STRUCTURES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2890}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28908}, pages = {9}, abstract = {In order to model and simulate collapses of large scale complex structures, a user-friendly and high performance software system is essential. Because a large number of simulation experiments have to be performed, therefore, next to an appropriate simulation model and high performance computing, efficient interactive control and visualization capabilities of model parameters and simulation results are crucial. To this respect, this contribution is concerned with advancements of the software system CADCE (Computer Aided Demolition using Controlled Explosives) that is extended under particular consideration of computational steering concepts. Thereby, focus is placed on problems and solutions for the collapse simulation of real world large scale complex structures. The simulation model applied is based on a multilevel approach embedding finite element models on a local as well as a near field length scale, and multibody models on a global scale. Within the global level simulation, relevant effects of the local and the near field scale, such as fracture and failure processes of the reinforced concrete parts, are approximated by means of tailor-made multibody subsystems. These subsystems employ force elements representing nonlinear material characteristics in terms of force/displacement relationships that, in advance, are determined by finite element analysis. In particular, enhancements concerning the efficiency of the multibody model and improvements of the user interaction are presented that are crucial for the capability of the computational steering. Some scenarios of collapse simulations of real world large scale structures demonstrate the implementation of the above mentioned approaches within the computational steering.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Siekierski, author = {Siekierski, Wojciech}, title = {CRITICAL STRESS ASSESSMENT IN ANGLE TO GUSSET PLATE BOLTED CONNECTION BY SIMPLIFIED FEM MODELLING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2889}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28897}, pages = {8}, abstract = {Simplified modelling of friction grip bolted connections of steel member - to - gusset plate is often applied in engineering practise. The paper deals with the simplification of pre-tensioned bolt model and simplification of load transfer within connection. Influence on normal strain (and thus stress) distribution at critical cross-section is investigated. Laboratory testing of single-angle or double-angle members - to - gusset plates bolted connections were taken as basis for numerical analysis. FE models were created using 1D and 2D elements. Angles and gusset plates were modelled with shell elements. Two methods of modelling of friction grip bolting were considered: bolt-regarding approach with 1D element systems modelling bolts and two variants of bolt-disregarding approach with special constraints over some part of member and gusset plate surfaces in contact: a) constraints over whole area of contact, b) constraints over the area around each bolt shank ("partially tied"). Modelling of friction grip bolted connections using simplified bolt modelling may be effective, especially in the case of analysis concerning elastic range only. In such a case disregarding bolts and replacing them with "partially tied" modelling seems to be more attractive. It is less time-consuming and provides results of similar accuracy in comparison to analysis utilizing simplified bolt modelling.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{MusialKaminskiUbysz, author = {Musial, Michal and Kaminski, Mieczysław and Ubysz, Andrzej}, title = {FREE VIBRATION FREQUENCIES OF THE CRACKED REINFORCED CONCRETE BEAMS - METHODS OF CALCULATIONS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2874}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28744}, pages = {8}, abstract = {The paper presents method of calculation of natural frequencies of the cracked reinforced concrete beams including discreet model of crack. The described method is based on the stiff finite elements method. It was modified in such a way as to take into account local discontinuities (ie. cracks). In addition, some theoretical studies as well as experimental tests of concrete mechanics based on discrete crack model were taken into consideration. The calculations were performed using the author's own numerical algorithm. Moreover, other calculation methods of dynamic reinforced concrete beams presented in standards and guidelines are discussed. Calculations performed by using different methods are compared with the results obtained in experimental tests.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{AhmedElSayedRashwanKamal, author = {Ahmed El-Sayed, Ahmed and Rashwan, R. A. and Kamal, A.}, title = {HADAMARD GAPS IN WEIGHTED LOGARITHMIC BLOCH SPACE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2827}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28275}, pages = {20}, abstract = {We give a sufficient and a necessary condition for an analytic function "f" on the unit disk "D" with Hadamard gap to belong to a class of weighted logarithmic Bloch space as well as to the corresponding little weighted logarithmic Bloch space under some conditions posed on the defined weight function. Also, we study the relations between the class of weighted logarithmic Bloch functions and some other classes of analytic functions by the help of analytic functions in the Hadamard gap class.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{GokceBrowneGokceetal., author = {Gokce, Hasan Ufuk and Browne, Donal and Gokce, Kamil Umut and Menzel, Karsten}, title = {IMPROVING ENERGY EFFICIENT OPERATION OF BUILDINGS WITH WIRELESS IT SYSTEMS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2845}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28453}, pages = {19}, abstract = {Reducing energy consumption is one of the major challenges for present day and will continue for future generations. The emerging EU directives relating to energy (EU EPBD and the EU Directive on Emissions Trading) now place demands on building owners to rate the energy performance of their buildings for efficient energy management. Moreover European Legislation (Directive 2006/32/EC) requires Facility Managers to reduce building energy consumption and operational costs. Currently sophisticated building services systems are available integrating off-the-shelf building management components. However this ad-hoc combination presents many difficulties to building owners in the management and upgrade of these systems. This paper addresses the need for integration concepts, holistic monitoring and analysis methodologies, life-cycle oriented decision support and sophisticated control strategies through the seamless integration of people, ICT-devices and computational resources via introducing the newly developed integrated system architecture. The first concept was applied to a residential building and the results were elaborated to improve current building conditions.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{BrackxDeSchepperLunaElizararrasetal., author = {Brackx, Fred and De Schepper, Hennie and Luna-Elizararras, Maria Elena and Shapiro, Michael}, title = {INTEGRAL REPRESENTATIONS IN HERMITEAN CLIFFORD ANALYSIS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2832}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28326}, pages = {13}, abstract = {Euclidean Clifford analysis is a higher dimensional function theory offering a refinement of classical harmonic analysis. The theory is centered around the concept of monogenic functions, i.e. null solutions of a first order vector valued rotation invariant differential operator called the Dirac operator, which factorizes the Laplacian. More recently, Hermitean Clifford analysis has emerged as a new and successful branch of Clifford analysis, offering yet a refinement of the Euclidean case; it focusses on the simultaneous null solutions, called Hermitean (or h-) monogenic functions, of two Hermitean Dirac operators which are invariant under the action of the unitary group. In Euclidean Clifford analysis, the Clifford-Cauchy integral formula has proven to be a corner stone of the function theory, as is the case for the traditional Cauchy formula for holomorphic functions in the complex plane. Previously, a Hermitean Clifford-Cauchy integral formula has been established by means of a matrix approach. This formula reduces to the traditional Martinelli-Bochner formula for holomorphic functions of several complex variables when taking functions with values in an appropriate part of complex spinor space. This means that the theory of Hermitean monogenic functions should encompass also other results of several variable complex analysis as special cases. At present we will elaborate further on the obtained results and refine them, considering fundamental solutions, Borel-Pompeiu representations and the Teoderescu inversion, each of them being developed at different levels, including the global level, handling vector variables, vector differential operators and the Clifford geometric product as well as the blade level were variables and differential operators act by means of the dot and wedge products. A rich world of results reveals itself, indeed including well-known formulae from the theory of several complex variables.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Franssens, author = {Franssens, Ghislain R.}, title = {INTRODUCTION TO CLIFFORD ANALYSIS OVER PSEUDO-EUCLIDEAN SPACE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2843}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28433}, pages = {16}, abstract = {An introduction is given to Clifford Analysis over pseudo-Euclidean space of arbitrary signature, called for short Ultrahyperbolic Clifford Analysis (UCA). UCA is regarded as a function theory of Clifford-valued functions, satisfying a first order partial differential equation involving a vector-valued differential operator, called a Dirac operator. The formulation of UCA presented here pays special attention to its geometrical setting. This permits to identify tensors which qualify as geometrically invariant Dirac operators and to take a position on the naturalness of contravariant and covariant versions of such a theory. In addition, a formal method is described to construct the general solution to the aforementioned equation in the context of covariant UCA.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{ChudobaScholzenHegger, author = {Chudoba, Rostislav and Scholzen, A. and Hegger, Josef}, title = {MICROPLANE MODEL WITH INITIAL AND DAMAGE-INDUCED ANISOTROPY APPLIED TO TEXTILE-REINFORCED CONCRETE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2836}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28367}, pages = {8}, abstract = {The presented material model reproduces the anisotropic characteristics of textile reinforced concrete in a smeared manner. This includes both the initial anisotropy introduced by the textile reinforcement, as well as the anisotropic damage evolution reflecting fine patterns of crack bridges. The model is based on the microplane approach. The direction-dependent representation of the material structure into oriented microplanes provides a flexible way to introduce the initial anisotropy. The microplanes oriented in a yarn direction are associated with modified damage laws that reflect the tension-stiffening effect due to the multiple cracking of the matrix along the yarn.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{RichterIlzigRudnicki, author = {Richter, Matthias and Ilzig, Katrin and Rudnicki, Andrzej}, title = {MODELS FOR THE BUS HEADWAY DISTRIBUTION IN THE FLOW BEHIND A TRAFFIC SIGNAL}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2852}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28521}, pages = {17}, abstract = {Several results concerning the distribution of the headway of busses in the flow behind a traffic signal are presented. In the main focus of interest is the description of analytical models, which are verified by the results of Monte-Carlo-Methods. The advantage of analytical models (verified, but not derived by simulation methods) is their flexibility with respect to possible generalizations. For instance, several random distributions of the flow incoming to the traffic signal can be compared. The attention will be directed at the question, how the primary headway H (analyzed in front of the traffic signal) is mapped to the headway H' analyzed behind of the traffic signal and how the random distribution of H is mapped to that of H'. For the traffic flow in front of the traffic signal several models will be discussed. The first case considers the situation, that busses operate on a common lane with the individual motor car traffic and the traffic flow is saturated. In the second situation, busses operate on a separated bus lane. Moreover, a mixed situation is discussed to model as close to reality as possible.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{HuhntRichter, author = {Huhnt, Wolfgang and Richter, Sven}, title = {Modification Management for Planning and Construction Processes}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2851}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28510}, pages = {13}, abstract = {Planning and construction processes are characterized by the peculiarity that they need to be designed individually for each project. It is necessary to set up an individual schedule for each project. As a basis for a new project, schedules from already finished projects are used, but adaptions are always necessary. In practice, scheduling tools only document a process. Schedules cover a set of activities, their duration and a set of interdependencies between activities. The design of a process is up to the user. It is not necessary to specify each interdependency, and completeness and correctness need to be checked manually. No methodologies are available to guarantee properties such as correctness or completeness. The considerations presented in the paper are based on an approach where a planning and a construction process including the interdependencies between planning and construction activities are regarded as a result. Selected information need to be specified by a user, and a proposal for an order of planning and construction activities is computed. As a consequence, process properties such as correctness and completeness can be guaranteed with respect to user input. Especially in Germany, clients are allowed to modify their requirements at any time. This leads to modifications in the planning and construction processes. This paper covers a mathematical formulation for this problem based on set theory. A complex structure is set up covering objects and relations; and operations are defined that guarantee consistency in the underlying and versioned process description. The presented considerations are based on previous work. This paper can be regarded as the next step in a series of previous work describing how a suitable concept for handling, planning and construction processes in civil engineering can be formed.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{LeRueppel, author = {Le, Hanh Quang and R{\"u}ppel, Uwe}, title = {MULTI-SITE CONSTRUCTION PROJECT SCHEDULING CONSIDERING RESOURCE MOVING TIME IN DEVELOPING COUNTRIES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2867}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28671}, pages = {15}, abstract = {Under the booming construction demands in developing countries, particularly in Vietnam situation, construction contractors often perform multiple concurrent projects in different places. In construction project scheduling processes, the existing scheduling methods often assume the resource moving time between activities/projects to be negligible. When multiple projects are deployed in different places and far from each other, this assumption has many shortcomings for properly modelling the real-world constraints. Especially, with respect to developing countries such as the Vietnam which contains transportation systems that are still in backward and low technical standards. This paper proposes a new algorithm named Multi-Site Construction Project Scheduling - MCOPS. The objective of this algorithm is to solve the problem of minimising multi-site construction project duration under limited available conditions of renewable resources (labour, machines and equipment) combining with the moving time of required resource among activities/projects. Additionally, in order to mitigate the impact of resource moving time into the multi-site project duration, this paper proposed a new priority rule: Minimum Resource Moving Time (MinRMT). The MinRMT is applied to rank the finished activities according to a priority order, to support the released resources to the scheduling activities. In order to investigate the impact of the resource moving time among activities during the scheduling process, computational experimentation was implemented. The results of the MCOPS-based computational experiments showed that, the resource moving time among projects has significantly impacted the multi-site project durations and this amount of time can not be ignored in the multi-site project scheduling process. Besides, the efficient application of the MinRMT is also demonstrated through the achieved results of the computational experiment in this paper. Though the efforts in this paper are based on the Vietnamese construction conditions, the proposed method can be usefully applied in other developing countries which have similar construction conditions.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Kunoth, author = {Kunoth, Angela}, title = {MULTISCALE ANALYSIS OF MULTIVARIATE DATA}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2864}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28644}, pages = {20}, abstract = {For many applications, nonuniformly distributed functional data is given which lead to large-scale scattered data problems. We wish to represent the data in terms of a sparse representation with a minimal amount of degrees of freedom. For this, an adaptive scheme which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a leastsquares approximation of the data is computed. We take into account different requests arising in large-scale scattered data fitting: we discuss the fast iterative solution of the least square systems, regularization of the data, and the treatment of outliers. A particular application concerns the approximate continuation of harmonic functions, an issue arising in geodesy.}, subject = {Angewandte Informatik}, language = {en} }