@inproceedings{OPUS4-2451, title = {International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2451}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150828-24515}, pages = {230}, abstract = {The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{AlYasiriGuerlebeck, author = {Al-Yasiri, Zainab and G{\"u}rlebeck, Klaus}, title = {ON BOUNDARY VALUE PROBLEMS FOR P-LAPLACE AND P-DIRAC EQUATIONS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2792}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27928}, pages = {8}, abstract = {The p-Laplace equation is a nonlinear generalization of the Laplace equation. This generalization is often used as a model problem for special types of nonlinearities. The p-Laplace equation can be seen as a bridge between very general nonlinear equations and the linear Laplace equation. The aim of this paper is to solve the p-Laplace equation for 2 < p < 3 and to find strong solutions. The idea is to apply a hypercomplex integral operator and spatial function theoretic methods to transform the p-Laplace equation into the p-Dirac equation. This equation will be solved iteratively by using a fixed point theorem.}, subject = {Angewandte Informatik}, language = {en} } @misc{Alabassy, type = {Master Thesis}, author = {Alabassy, Mohamed Said Helmy}, title = {Automated Approach for Building Information Modelling of Crack Damages via Image Segmentation and Image-based 3D Reconstruction}, doi = {10.25643/bauhaus-universitaet.6416}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230818-64162}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {101}, abstract = {As machine vision-based inspection methods in the field of Structural Health Monitoring (SHM) continue to advance, the need for integrating resulting inspection and maintenance data into a centralised building information model for structures notably grows. Consequently, the modelling of found damages based on those images in a streamlined automated manner becomes increasingly important, not just for saving time and money spent on updating the model to include the latest information gathered through each inspection, but also to easily visualise them, provide all stakeholders involved with a comprehensive digital representation containing all the necessary information to fully understand the structure's current condition, keep track of any progressing deterioration, estimate the reduced load bearing capacity of the damaged element in the model or simulate the propagation of cracks to make well-informed decisions interactively and facilitate maintenance actions that optimally extend the service life of the structure. Though significant progress has been recently made in information modelling of damages, the current devised methods for the geometrical modelling approach are cumbersome and time consuming to implement in a full-scale model. For crack damages, an approach for a feasible automated image-based modelling is proposed utilising neural networks, classical computer vision and computational geometry techniques with the aim of creating valid shapes to be introduced into the information model, including related semantic properties and attributes from inspection data (e.g., width, depth, length, date, etc.). The creation of such models opens the door for further possible uses ranging from more accurate structural analysis possibilities to simulation of damage propagation in model elements, estimating deterioration rates and allows for better documentation, data sharing, and realistic visualisation of damages in a 3D model.}, subject = {Building Information Modeling}, language = {en} } @inproceedings{AlaladeKafleWuttkeetal., author = {Alalade, Muyiwa and Kafle, Binod and Wuttke, Frank and Lahmer, Tom}, title = {CALIBRATION OF CYCLIC CONSTITUTIVE MODELS FOR SOILS BY OSCILLATING FUNCTIONS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2793}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27932}, pages = {6}, abstract = {In order to minimize the probability of foundation failure resulting from cyclic action on structures, researchers have developed various constitutive models to simulate the foundation response and soil interaction as a result of these complex cyclic loads. The efficiency and effectiveness of these model is majorly influenced by the cyclic constitutive parameters. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model based identification of the cyclic constitutive parameters. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimization strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However for the back analysis (calibration) of the soil response to oscillatory load functions, this paper gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high quality solutions are obtained with minimum computational effort. Therefore model responses are produced which adequately describes what would otherwise be experienced in the laboratory or field.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{AlmamouGebhardtBocketal., author = {Almamou, Abd Albasset and Gebhardt, Thomas and Bock, Sebastian and Hildebrand, J{\"o}rg and Schwarz, Willfried}, title = {QUALITY CONTROL OF CONSTRUCTED MODELS USING 3D POINT CLOUD}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2794}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27944}, pages = {9}, abstract = {Over the last decade, the technology of constructing buildings has been dramatically developed especially with the huge growth of CAD tools that help in modeling buildings, bridges, roads and other construction objects. Often quality control and size accuracy in the factory or on construction site are based on manual measurements of discrete points. These measured points of the realized object or a part of it will be compared with the points of the corresponding CAD model to see whether and where the construction element fits into the respective CAD model. This process is very complicated and difficult even when using modern measuring technology. This is due to the complicated shape of the components, the large amount of manually detected measured data and the high cost of manual processing of measured values. However, by using a modern 3D scanner one gets information of the whole constructed object and one can make a complete comparison against the CAD model. It gives an idea about quality of objects on the whole. In this paper, we present a case study of controlling the quality of measurement during the constructing phase of a steel bridge by using 3D point cloud technology. Preliminary results show that an early detection of mismatching between real element and CAD model could save a lot of time, efforts and obviously expenses.}, subject = {Angewandte Informatik}, language = {en} } @article{ArtusAlabassyKoch, author = {Artus, Mathias and Alabassy, Mohamed Said Helmy and Koch, Christian}, title = {A BIM Based Framework for Damage Segmentation, Modeling, and Visualization Using IFC}, series = {Applied Sciences}, volume = {2022}, journal = {Applied Sciences}, number = {volume 12, issue 6, article 2772}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app12062772}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220314-46059}, pages = {1 -- 24}, abstract = {Paper-based data acquisition and manual transfer between incompatible software or data formats during inspections of bridges, as done currently, are time-consuming, error-prone, cumbersome, and lead to information loss. A fully digitized workflow using open data formats would reduce data loss, efforts, and the costs of future inspections. On the one hand, existing studies proposed methods to automatize data acquisition and visualization for inspections. These studies lack an open standard to make the gathered data available for other processes. On the other hand, several studies discuss data structures for exchanging damage information among different stakeholders. However, those studies do not cover the process of automatic data acquisition and transfer. This study focuses on a framework that incorporates automatic damage data acquisition, transfer, and a damage information model for data exchange. This enables inspectors to use damage data for subsequent analyses and simulations. The proposed framework shows the potentials for a comprehensive damage information model and related (semi-)automatic data acquisition and processing.}, subject = {Building Information Modeling}, language = {en} } @article{ArtusKoch, author = {Artus, Mathias and Koch, Christian}, title = {Object-Oriented Damage Information Modeling Concepts and Implementation for Bridge Inspection}, series = {Journal of Computing in Civil Engineering}, volume = {2022}, journal = {Journal of Computing in Civil Engineering}, number = {Volume 36, issue 6}, doi = {10.1061/(ASCE)CP.1943-5487.0001030}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220826-47087}, pages = {1 -- 21}, abstract = {Bridges are designed to last for more than 50 years and consume up to 50\% of their life-cycle costs during their operation phase. Several inspections and assessment actions are executed during this period. Bridge and damage information must be gathered, digitized, and exchanged between different stakeholders. Currently, the inspection and assessment practices rely on paper-based data collection and exchange, which is time-consuming and error-prone, and leads to loss of information. Storing and exchanging damage and building information in a digital format may lower costs and errors during inspection and assessment and support future needs, for example, immediate simulations regarding performance assessment, automated maintenance planning, and mixed reality inspections. This study focused on the concept for modeling damage information to support bridge reviews and structural analysis. Starting from the definition of multiple use cases and related requirements, the data model for damage information is defined independently from the subsequent implementation. In the next step, the implementation via an established standard is explained. Functional tests aim to identify problems in the concept and implementation. To show the capability of the final model, two example use cases are illustrated: the inspection review of the entire bridge and a finite-element analysis of a single component. Main results are the definition of necessary damage data, an object-oriented damage model, which supports multiple use cases, and the implementation of the model in a standard. Furthermore, the tests have shown that the standard is suitable to deliver damage information; however, several software programs lack proper implementation of the standard.}, subject = {Building Information Modeling}, language = {en} } @article{ArtusKoch, author = {Artus, Mathias and Koch, Christian}, title = {State of the art in damage information modeling for RC bridges - A literature review}, series = {Advanced Engineering Informatics}, volume = {2020}, journal = {Advanced Engineering Informatics}, number = {volume 46, article 101171}, publisher = {Elsevier Science}, address = {Amsterdam}, doi = {10.1016/j.aei.2020.101171}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220506-46390}, pages = {1 -- 16}, abstract = {In Germany, bridges have an average age of 40 years. A bridge consumes between 0.4\% and 2\% of its construction cost per year over its entire life cycle. This means that up to 80\% of the construction cost are additionally needed for operation, inspection, maintenance, and destruction. Current practices rely either on paperbased inspections or on abstract specialist software. Every application in the inspection and maintenance sector uses its own data model for structures, inspections, defects, and maintenance. Due to this, data and properties have to be transferred manually, otherwise a converter is necessary for every data exchange between two applications. To overcome this issue, an adequate model standard for inspections, damage, and maintenance is necessary. Modern 3D models may serve as a single source of truth, which has been suggested in the Building Information Modeling (BIM) concept. Further, these models offer a clear visualization of the built infrastructure, and improve not only the planning and construction phases, but also the operation phase of construction projects. BIM is established mostly in the Architecture, Engineering, and Construction (AEC) sector to plan and construct new buildings. Currently, BIM does not cover the whole life cycle of a building, especially not inspection and maintenance. Creating damage models needs the building model first, because a defect is dependent on the building component, its properties and material. Hence, a building information model is necessary to obtain meaningful conclusions from damage information. This paper analyzes the requirements, which arise from practice, and the research that has been done in modeling damage and related information for bridges. With a look at damage categories and use cases related to inspection and maintenance, scientific literature is discussed and synthesized. Finally, research gaps and needs are identified and discussed.}, subject = {Building Information Modeling}, language = {de} } @article{Bargstaedt, author = {Bargst{\"a}dt, Hans-Joachim}, title = {Challenges of BIM for Construction Site Operations}, series = {Procedia Engineering}, journal = {Procedia Engineering}, doi = {10.1016/j.proeng.2015.08.123}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170413-31218}, pages = {52 -- 59}, abstract = {Building Information Modeling is a powerful tool for the design and for a consistent set of data in a virtual storage. For the application in the phases of realization and on site it needs further development. The paper describes main challenges and main features, which will help the development of software to better service the needs of construction site managers}, subject = {Building Information Modeling}, language = {en} } @inproceedings{BargstaedtTarigan, author = {Bargst{\"a}dt, Hans-Joachim and Tarigan, Rina Sari}, title = {RULE BASED EXPANSION OF STANDARD CONSTRUCTION PROCESSES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2822}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28229}, pages = {6}, abstract = {The paper introduces a systematic construction management approach, supporting expansion of a specified construction process, both automatically and semi-automatically. Throughout the whole design process, many requirements must be taken into account in order to fulfil demands defined by clients. In implementing those demands into a design concept up to the execution plan, constraints such as site conditions, building code, and legal framework are to be considered. However, complete information, which is needed to make a sound decision, is not yet acquired in the early phase. Decisions are traditionally taken based on experience and assumptions. Due to a vast number of appropriate available solutions, particularly in building projects, it is necessary to make those decisions traceable. This is important in order to be able to reconstruct considerations and assumptions taken, should there be any changes in the future project's objectives. The research will be carried out by means of building information modelling, where rules deriving from standard logics of construction management knowledge will be applied. The knowledge comprises a comprehensive interaction amongst bidding process, cost-estimation, construction site preparation as well as specific project logistics - which are usually still separately considered. By means of these rules, favourable decision taking regarding prefabrication and in-situ implementation can be justified. Modifications depending on the available information within current design stage will consistently be traceable.}, subject = {Angewandte Informatik}, language = {en} } @article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3835}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181221-38354}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Building Information Modeling}, language = {de} } @article{BenzTarabenLichtenheldetal., author = {Benz, Alexander and Taraben, Jakob and Lichtenheld, Thomas and Morgenthal, Guido and V{\"o}lker, Conrad}, title = {Thermisch-energetische Geb{\"a}udesimulation auf Basis eines Bauwerksinformationsmodells}, series = {Bauphysik}, journal = {Bauphysik}, number = {40, Heft 2}, doi = {10.25643/bauhaus-universitaet.3819}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181102-38190}, pages = {61 -- 67}, abstract = {F{\"u}r eine Absch{\"a}tzung des Heizw{\"a}rmebedarfs von Geb{\"a}uden und Quartieren k{\"o}nnen thermisch-energetische Simulationen eingesetzt werden. Grundlage dieser Simulationen sind geometrische und physikalische Geb{\"a}udemodelle. Die Erstellung des geometrischen Modells erfolgt in der Regel auf Basis von Baupl{\"a}nen oder Vor-Ort-Begehungen, was mit einem großen Recherche- und Modellierungsaufwand verbunden ist. Sp{\"a}tere bauliche Ver{\"a}nderungen des Geb{\"a}udes m{\"u}ssen h{\"a}ufig manuell in das Modell eingearbeitet werden, was den Arbeitsaufwand zus{\"a}tzlich erh{\"o}ht. Das physikalische Modell stellt die Menge an Parametern und Randbedingungen dar, welche durch Materialeigenschaften, Lage und Umgebungs-einfl{\"u}sse gegeben sind. Die Verkn{\"u}pfung beider Modelle wird innerhalb der entsprechenden Simulations-software realisiert und ist meist nicht in andere Softwareprodukte {\"u}berf{\"u}hrbar. Mithilfe des Building Information Modeling (BIM) k{\"o}nnen Simulationsdaten sowohl konsistent gespeichert als auch {\"u}ber Schnittstellen mit entsprechenden Anwendungen ausgetauscht werden. Hierf{\"u}r wird eine Methode vorgestellt, die thermisch-energetische Simulationen auf Basis des standardisierten {\"U}bergabe-formats Industry Foundation Classes (IFC) inklusive anschließender Auswertungen erm{\"o}glicht. Dabei werden geometrische und physikalische Parameter direkt aus einem {\"u}ber den gesamten Lebenszyklus aktuellen Geb{\"a}udemodell extrahiert und an die Simulation {\"u}bergeben. Dies beschleunigt den Simulations-prozess hinsichtlich der Geb{\"a}udemodellierung und nach sp{\"a}teren baulichen Ver{\"a}nderungen. Die erarbeite-te Methode beruht hierbei auf einfachen Modellierungskonventionen bei der Erstellung des Bauwerksinformationsmodells und stellt eine vollst{\"a}ndige {\"U}bertragbarkeit der Eingangs- und Ausgangswerte sicher. Thermal building simulation based on BIM-models. Thermal energetic simulations are used for the estimation of the heating demand of buildings and districts. These simulations are based on building models containing geometrical and physical information. The creation of geometrical models is usually based on existing construction plans or in situ assessments which demand a comparatively big effort of investigation and modeling. Alterations, which are later applied to the structure, request manual changes of the related model, which increases the effort additionally. The physical model represents the total amount of parameters and boundary conditions that are influenced by material properties, location and environmental influences on the building. The link between both models is realized within the correspondent simulation soft-ware and is usually not transferable to other software products. By Applying Building Information Modeling (BIM) simulation data is stored consistently and an exchange to other software is enabled. Therefore, a method which allows a thermal energetic simulation based on the exchange format Industry Foundation Classes (IFC) including an evaluation is presented. All geometrical and physical information are extracted directly from the building model that is kept up-to-date during its life cycle and transferred to the simulation. This accelerates the simulation process regarding the geometrical modeling and adjustments after later changes of the building. The developed method is based on simple conventions for the creation of the building model and ensures a complete transfer of all simulation data.}, subject = {Geb{\"a}udeh{\"u}lle}, language = {de} } @phdthesis{Berhe, author = {Berhe, Asgedom Haile}, title = {Mitigating Risks of Corruption in Construction: A theoretical rationale for BIM adoption in Ethiopia}, doi = {10.25643/bauhaus-universitaet.4517}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211007-45175}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {336}, abstract = {This PhD thesis sets out to investigate the potentials of Building Information Modeling (BIM) to mitigate risks of corruption in the Ethiopian public construction sector. The wide-ranging capabilities and promises of BIM have led to the strong perception among researchers and practitioners that it is an indispensable technology. Consequently, it has become the frequent subject of science and research. Meanwhile, many countries, especially the developed ones, have committed themselves to applying the technology extensively. Increasing productivity is the most common and frequently cited reason for that. However, both technology developers and adopters are oblivious to the potentials of BIM in addressing critical challenges in the construction sector, such as corruption. This particularly would be significant in developing countries like Ethiopia, where its problems and effects are acute. Studies reveal that bribery and corruption have long pervaded the construction industry worldwide. The complex and fragmented nature of the sector provides an environment for corruption. The Ethiopian construction sector is not immune from this epidemic reality. In fact, it is regarded as one of the most vulnerable sectors owing to varying socio-economic and political factors. Since 2015, Ethiopia has started adopting BIM, yet without clear goals and strategies. As a result, the potential of BIM for combating concrete problems of the sector remains untapped. To this end, this dissertation does pioneering work by showing how collaboration and coordination features of the technology contribute to minimizing the opportunities for corruption. Tracing loopholes, otherwise, would remain complex and ineffective in the traditional documentation processes. Proceeding from this anticipation, this thesis brings up two primary questions: what are areas and risks of corruption in case of the Ethiopian public construction projects; and how could BIM be leveraged to mitigate these risks? To tackle these and other secondary questions, the research employs a mixed-method approach. The selected main research strategies are Survey, Grounded Theory (GT) and Archival Study. First, the author disseminates an online questionnaire among Ethiopian construction engineering professionals to pinpoint areas of vulnerability to corruption. 155 responses are compiled and scrutinized quantitatively. Then, a semi-structured in-depth interview is conducted with 20 senior professionals, primarily to comprehend opportunities for and risks of corruption in those identified highly vulnerable project stages and decision points. At the same time, open interviews (consultations) are held with 14 informants to be aware of state of the construction documentation, BIM and loopholes for corruption in the country. Consequently, these qualitative data are analyzed utilizing the principles of GT, heat/risk mapping and Social Network Analysis (SNA). The risk mapping assists the researcher in the course of prioritizing corruption risks; whilst through SNA, methodically, it is feasible to identify key actors/stakeholders in the corruption venture. Based on the generated research data, the author constructs a [substantive] grounded theory around the elements of corruption in the Ethiopian public construction sector. This theory, later, guides the subsequent strategic proposition of BIM. Finally, 85 public construction related cases are also analyzed systematically to substantiate and confirm previous findings. By ways of these multiple research endeavors that is based, first and foremost, on the triangulation of qualitative and quantitative data analysis, the author conveys a number of key findings. First, estimations, tender document preparation and evaluation, construction material as well as quality control and additional work orders are found to be the most vulnerable stages in the design, tendering and construction phases respectively. Second, middle management personnel of contractors and clients, aided by brokers, play most critical roles in corrupt transactions within the prevalent corruption network. Third, grand corruption persists in the sector, attributed to the fact that top management and higher officials entertain their overriding power, supported by the lack of project audits and accountability. Contrarily, individuals at operation level utilize intentional and unintentional 'errors' as an opportunity for corruption. In light of these findings, two conceptual BIM-based risk mitigation strategies are prescribed: active and passive automation of project audits; and the monitoring of project information throughout projects' value chain. These propositions are made in reliance on BIM's present dimensional capabilities and the promises of Integrated Project Delivery (IPD). Moreover, BIM's synchronous potentials with other technologies such as Information and Communication Technology (ICT), and Radio Frequency technologies are topics which received a treatment. All these arguments form the basis for the main thesis of this dissertation, that BIM is able to mitigate corruption risks in the Ethiopian public construction sector. The discourse on the skepticisms about BIM that would stem from the complex nature of corruption and strategic as well as technological limitations of BIM is also illuminated and complemented by this work. Thus, the thesis uncovers possible research gaps and lays the foundation for further studies.}, subject = {Building Information Modeling}, language = {en} } @inproceedings{FerreiraVieira, author = {Ferreira, Milton dos Santos and Vieira, Nelson}, title = {EIGENFUNCTIONS AND FUNDAMENTAL SOLUTIONS FOR THE FRACTIONAL LAPLACIAN IN 3 DIMENSIONS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2796}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27968}, pages = {6}, abstract = {Recently there has been a surge of interest in PDEs involving fractional derivatives in different fields of engineering. In this extended abstract we present some of the results developedin [3]. We compute the fundamental solution for the three-parameter fractional Laplace operator Δ by transforming the eigenfunction equation into an integral equation and applying the method of separation of variables. The obtained solutions are expressed in terms of Mittag-Leffer functions. For more details we refer the interested reader to [3] where it is also presented an operational approach based on the two Laplace transform.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Grigor'ev, author = {Grigor'ev, Yuri}, title = {REGULAR QUATERNIONIC FUNCTIONS AND THEIR APPLICATIONS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2798}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27988}, pages = {6}, abstract = {The theory of regular quaternionic functions of a reduced quaternionic variable is a 3-dimensional generalization of complex analysis. The Moisil-Theodorescu system (MTS) is a regularity condition for such functions depending on the radius vector r = ix+jy+kz seen as a reduced quaternionic variable. The analogues of the main theorems of complex analysis for the MTS in quaternion forms are established: Cauchy, Cauchy integral formula, Taylor and Laurent series, approximation theorems and Cauchy type integral properties. The analogues of positive powers (inner spherical monogenics) are investigated: the set of recurrence formulas between the inner spherical monogenics and the explicit formulas are established. Some applications of the regular function in the elasticity theory and hydrodynamics are given.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{GoebelOsburgLahmer, author = {G{\"o}bel, Luise and Osburg, Andrea and Lahmer, Tom}, title = {STUDY OF ANALYTICAL MODELS OF THE MECHANICAL BEHAVIOR OF POLYMER-MODIFIED CONCRETE}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2797}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27973}, pages = {9}, abstract = {Polymer modification of mortar and concrete is a widely used technique in order to improve their durability properties. Hitherto, the main application fields of such materials are repair and restoration of buildings. However, due to the constant increment of service life requirements and the cost efficiency, polymer modified concrete (PCC) is also used for construction purposes. Therefore, there is a demand for studying the mechanical properties of PCC and entitative differences compared to conventional concrete (CC). It is significant to investigate whether all the assumed hypotheses and existing analytical formulations about CC are also valid for PCC. In the present study, analytical models available in the literature are evaluated. These models are used for estimating mechanical properties of concrete. The investigated property in this study is the modulus of elasticity, which is estimated with respect to the value of compressive strength. One existing database was extended and adapted for polymer-modified concrete mixtures along with their experimentally measured mechanical properties. Based on the indexed data a comparison between model predictions and experiments was conducted by calculation of forecast errors.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{HartmannSmarslyLahmer, author = {Hartmann, Veronika and Smarsly, Kay and Lahmer, Tom}, title = {ROBUST SCHEDULING IN CONSTRUCTION ENGINEERING}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2799}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27994}, pages = {5}, abstract = {In construction engineering, a schedule's input data, which is usually not exactly known in the planning phase, is considered deterministic when generating the schedule. As a result, construction schedules become unreliable and deadlines are often not met. While the optimization of construction schedules with respect to costs and makespan has been a matter of research in the past decades, the optimization of the robustness of construction schedules has received little attention. In this paper, the effects of uncertainties inherent to the input data of construction schedules are discussed. Possibilities are investigated to improve the reliability of construction schedules by considering alternative processes for certain tasks and by identifying the combination of processes generating the most robust schedule with respect to the makespan of a construction project.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{HommelGuerlebeck, author = {Hommel, Angela and G{\"u}rlebeck, Klaus}, title = {THE RELATIONSHIP BETWEEN LINEAR ELASTICITY THEORY AND COMPLEX FUNCTION THEORY STUDIED ON THE BASIS OF FINITE DIFFERENCES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2801}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28010}, pages = {6}, abstract = {It is well-known that the solution of the fundamental equations of linear elasticity for a homogeneous isotropic material in plane stress and strain state cases can be equivalently reduced to the solution of a biharmonic equation. The discrete version of the Theorem of Goursat is used to describe the solution of the discrete biharmonic equation by the help of two discrete holomorphic functions. In order to obtain a Taylor expansion of discrete holomorphic functions we introduce a basis of discrete polynomials which fulfill the so-called Appell property with respect to the discrete adjoint Cauchy-Riemann operator. All these steps are very important in the field of fracture mechanics, where stress and displacement fields in the neighborhood of singularities caused by cracks and notches have to be calculated with high accuracy. Using the sum representation of holomorphic functions it seems possible to reproduce the order of singularity and to determine important mechanical characteristics.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{HoelterMahmoudiSchanz, author = {H{\"o}lter, Raoul and Mahmoudi, Elham and Schanz, Tom}, title = {OPTIMAL SENSOR LOCATION FOR PARAMETER IDENTIFICATION IN SOFT CLAY}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2800}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28008}, pages = {6}, abstract = {Performing parameter identification prior to numerical simulation is an essential task in geotechnical engineering. However, it has to be kept in mind that the accuracy of the obtained parameter is closely related to the chosen experimental setup, such as the number of sensors as well as their location. A well considered position of sensors can increase the quality of the measurement and to reduce the number of monitoring points. This Paper illustrates this concept by means of a loading device that is used to identify the stiffness and permeability of soft clays. With an initial setup of the measurement devices the pore water pressure and the vertical displacements are recorded and used to identify the afore mentioned parameters. Starting from these identified parameters, the optimal measurement setup is investigated with a method based on global sensitivity analysis. This method shows an optimal sensor location assuming three sensors for each measured quantity, and the results are discussed.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{IgnatovaKirschkeTauscheretal., author = {Ignatova, Elena and Kirschke, Heiko and Tauscher, Eike and Smarsly, Kay}, title = {PARAMETRIC GEOMETRIC MODELING IN CONSTRUCTION PLANNING USING INDUSTRY FOUNDATION CLASSES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2802}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28024}, pages = {8}, abstract = {One of the most promising and recent advances in computer-based planning is the transition from classical geometric modeling to building information modeling (BIM). Building information models support the representation, storage, and exchange of various information relevant to construction planning. This information can be used for describing, e.g., geometric/physical properties or costs of a building, for creating construction schedules, or for representing other characteristics of construction projects. Based on this information, plans and specifications as well as reports and presentations of a planned building can be created automatically. A fundamental principle of BIM is object parameterization, which allows specifying geometrical, numerical, algebraic and associative dependencies between objects contained in a building information model. In this paper, existing challenges of parametric modeling using the Industry Foundation Classes (IFC) as a federated model for integrated planning are shown, and open research questions are discussed.}, subject = {Angewandte Informatik}, language = {en} }