@inproceedings{DzwigonHempel, author = {Dzwigon, Wieslaw and Hempel, Lorenz}, title = {ZUR SYNCHRONISATION VON LINIEN IM {\"O}PNV}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2944}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29442}, pages = {12}, abstract = {Wir betrachten im {\"O}PNV ({\"O}ffentlichen Personennahverkehr) diejenige Situation, daß zwei Bus- oder Straßenbahnlinien gemeinsame Haltestellen haben. Ziel unserer Untersuchungen ist es, f{\"u}r beide Linien einen solchen Fahrplan zu finden, der f{\"u}r die Fahrg{\"a}ste m{\"o}glichst viel Bequemlichkeit bietet. Die Bedarfsstruktur - die Anzahl von Personen, die die beiden Linien benutzen - setzt dabei gewisse Beschr{\"a}nkungen f{\"u}r die Taktzeiten der beiden Linien. Die verbleibenden Entscheidungsfreiheiten sollen im Sinne der Zielstellung ausgenutzt werden. Im Vortrag wird folgenden Fragen nachgegangen: - nach welchen Kriterien kann man die "Bequemlichkeit" oder die "Synchonisationsg{\"u}te" messen? - wie kann man die einzelnen "Synchronisationsmaße" berechnen ? - wie kann man die verbleibenden Entscheidungsfreiheiten nutzen, um eine m{\"o}glichst gute Synchronisation zu erreichen ? Die Ergebnisse werden dann auf einige Beispiele angewandt und mit den bereitgestellten Methoden L{\"o}sungsvorschl{\"a}ge unterbreitet.}, subject = {Architektur }, language = {de} } @inproceedings{RogożaStachonUbysz, author = {Rogoża, Agnieszka and Stachon, T. and Ubysz, Andrzej}, title = {MODELLING THE PLASTIC HINGE IN THE STATICALLY INDETERMINABLE REINFORCED CONCRETE BAR ELEMENTS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3005}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30050}, pages = {6}, abstract = {The paper presents the example numerical model to calculate the reinforced concrete bar structures. Usually applied methods of structure dimensioning do not include the case of plastic hinges occurrence under the limit load of construction. The model represented by A. Borcz is based on the differential equation of deflection line of the beam and it includes the effects of rearrangement of the internal forces and reological effects. The experimental parameters obtained in earlier investigations describe effects resulting from the rise of plastic hinges in the proposed equation.}, subject = {Architektur }, language = {en} } @inproceedings{EngelkeSchuster, author = {Engelke, Gerald and Schuster, Otmar}, title = {OPENING THE RESERVE OF ECONOMIC EFFICIENCY IN LOGISTICAL AND FACILITY MANAGEMENT SERVICES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3017}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30177}, pages = {8}, abstract = {In many branches companies often lose the visibility of their human and technical resources of their field service. On the one hand the people in the fieldservice are often free like kings on the other hand they do not take part of the daily communication in the central office and suffer under the lacking involvement in the decisions inside the central office. The result is inefficiency. Reproaches in both directions follow. With the radio systems and then mobile phones the ditch began to dry up. But the solutions are far from being productive.}, subject = {Architektur }, language = {en} } @inproceedings{SchererGrinewitschus, author = {Scherer, Klaus and Grinewitschus, Viktor}, title = {INTEGRIERTE SYSTEMBEDIENUNG IN GEB{\"A}UDEN: KOMPLEXE TECHNIK EINFACHER HANDHABEN}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3013}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30132}, pages = {7}, abstract = {R{\"a}ume und Geb{\"a}ude sind heute wegen der enormen Funktionalit{\"a}t der technischen Geb{\"a}udeausr{\"u}stung (TGA) in Kombination mit der sonstigen Ausstattung und den diversen Anwendungsprozessen und Nutzergruppen ohne innovative Konzepte der integrierten Bedienung kaum noch beherrschbar bzw. optimal nutzbar. Dies gilt sowohl f{\"u}r Wohn- als auch f{\"u}r Zweckimmobilien. Die Geb{\"a}udeleittechnik (GLT) und die Geb{\"a}udeautomation (GA) k{\"o}nnen hier unter sinnvoller Integration der M{\"o}glichkeiten der Mikroelektronik, Multimedia-, Kommunikations- und Informationstechnik erheblich zu nutzbringenden Innovationen beitragen. Die Automobilindustrie hat in den letzten Jahren gezeigt, wie durch einen integralen Systemansatz und durch Einsatz von Elektronik, Kommunikations- und Informationstechnik eine sinnvolle technische Assistenz der Anwender machbar ist. Genannt sei hier das Konzept des Cockpits mit integrierter Funktionsb{\"u}ndelung und der Informationskonzentration am Armaturenbrett. Im Gegensatz zum Automobil ist der Bereich der technischen Geb{\"a}udeausstattung in Wohn- und Nutzimmobilien gekennzeichnet durch eine starke Fragmentierung in unterschiedlichste Gewerke unter Beteiligung vieler oft schlecht koordinierter Akteure. Durch das Duisburger inHaus-Innovationszentrum f{\"u}r Intelligente Raum- und Geb{\"a}udesysteme der Fraunhofer-Gesellschaft wurden in den letzten Jahren neuartige Konzepte der Systemintegration heterogener Technik auf der Basis von Middleware-Plattformen und Multimedia-Technologien und -Ger{\"a}ten entwickelt, getestet und in die Anwendung getragen. Einer der ersten Systemanwendungen dieses offenen Infrastrukturkonzepts ist die integrierte Systembedienung mit zum Teil v{\"o}llig neuen Bedienkonzepten und einer starken Bedienungsvereinfachung auch komplexester Technikausr{\"u}stungen in Immobilien. Der Beitrag beschreibt nach einer Analyse der Ausgangslage die technologischen Grundz{\"u}ge der integrierten Systembedienung. Es folgen einige Anwendungsbeispiele und eine zusammenfassende Bewertung mit einem Ausblick auf weiterf{\"u}hrende Aktivit{\"a}ten.}, subject = {Architektur }, language = {de} } @inproceedings{WoszczynaKaminskiMajetal., author = {Woszczyna, Anna and Kaminski, Mieczysław and Maj, Marek and Ubysz, Andrzej}, title = {ANALYSING THE INFLUENCE OF THE REINFORCED CONCRETE CHIMNEY GEOMETRY CHANGES ON THE STRESSES IN THE CHIMNEY SHAFT}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3038}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30388}, pages = {7}, abstract = {Analysis of the reinforced concrete chimney geometry changes and their influence on the stresses in the chimney mantle was made. All the changes were introduced to a model chimney and compared. Relations between the stresses in the mantle of the chimney and the deformations determined by the change of the chimney's vertical axis geometry were investigated. The vertical axis of chimney was described by linear function (corresponding to the real rotation of the chimney together with the foundation), and by parabolic function (corresponding to the real dislocation of the chimney under the influence of the horizontal forces - wind). The positive stress pattern in the concrete as well as the negative stress pattern in the reinforcing steel have been presented. The two cases were compared. Analysis of the stress changes in the chimney mantle depending on the modification in the thickness of the mantle (the thickness of the chimney mantle was altered in the linear or the abrupt way) was carried out. The relation between the stresses and the chimney's diameter change from the bottom to the top of the chimney was investigated. All the analyses were conducted by means of a specially developed computer program created in Mathematica environment. The program makes it also possible to control calculations and to visualize the results of the calculations at every stage of the calculation process.}, subject = {Architektur }, language = {en} } @inproceedings{Siekierski, author = {Siekierski, Wojciech}, title = {VARIATION OF ROTATIONAL RESTRAINT IN GRID DECK CONNECTION DUE TO CORROSION DAMAGE AND STRENGTHENING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3021}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30217}, pages = {8}, abstract = {The approach to assessment of rotational restraint of stringer-to-crossbeam connection in a deck of 100-year old steel truss bridge is presented. Sensitivity of rotational restraint coefficient of the connection to corrosion damage and strengthening is analyzed. Two criteria of the assessment of the rotational restraint coefficient are applied: static and kinematic one. The former is based on bending moment distribution in the considered member, the latter one - on the member rotation at the given joint. 2D-element model of finite element method is described: webs and flanges are modeled with shell elements, while rivets in the connection - with system of beam and spring elements. The method of rivet modeling is verified by T-stub connection test results published in literature. FEM analyses proved that recorded extent of corrosion damage does not alter the initial rotational restraint of stringer-to-crossbeam connection. Strengthening of stringer midspan influences midspan bending moment and stringer end rotation in a different way. Usually restoring member load bearing capacity means strengthening its critical regions (where the highest stress levels occur). This alters flexural stiffness distribution over member length and influences rotational restraint at its connection to other members. The impact depends on criterion chosen for rotational restraint coefficient assessment.}, subject = {Architektur }, language = {en} } @inproceedings{SchoenbergerHermann, author = {Sch{\"o}nberger, Karsten and Hermann, F.}, title = {COMPUTERGEST{\"U}TZTES PORTFOLIOMANAGEMENT - EIN PRAXISBEISPIEL}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3016}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30168}, pages = {10}, abstract = {Die Kommunale Wohnungsgesellschaft mbH Erfurt(KoWo) ist mit ihren rund 20.000 Wohnungen in der Landeshauptstadt das gr{\"o}ßte Wohnungsunternehmen in Th{\"u}ringen. Der Immobilienbestand ist heterogen in seinem technischen Zustand und im Bezug auf die unterschiedlichen Lagen der Objekte. Bedingt durch Leerst{\"a}nde und unterschiedliche Modernisierungsmaßnahmen und -st{\"a}nde unterscheidet sich die Wirtschaftlichkeit verschiedener Objekte deutlich. Ohne eine einheitliche Einwertung des Immobilienbestandes im Bezug auf die Objektattraktivit{\"a}t, die Standortqualit{\"a}t und die Objektwirtschaftlichkeit f{\"a}llt eine langfristige strategische Entwicklung des Immobilienportfolios schwer. {\"U}ber die Schritte der technischen Bestandserfassung, die Einwertung {\"u}ber ein Scorintmodell, die Abbildung in einem Portfoliomodell mit zugeh{\"o}riger Normstrategie bis hin zur Weiterverarbeitung der Daten in der 20-j{\"a}hrigen Instandsetzungsplanung wird praxisnah aufgezeigt, wie die Vorgehensweise bei der Einwertung des Immobilienportfolios ist.}, subject = {Architektur }, language = {de} } @inproceedings{SchererGrinewitschus, author = {Scherer, Klaus and Grinewitschus, Viktor}, title = {AMBIENT INTELLIGENCE IN RAUM UND BAU INNOVATIVE TECHNIKASSISTENZ F{\"U}R FACILITY MANAGEMENT UND ANWENDUNG}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2914}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29140}, pages = {9}, abstract = {Mikroelektronik und Mikrosystemtechnik in Kombination mit Informations- und Kommunikations-technik erlauben es mittlerweile, Rechenleistung und Kommunikationsf{\"a}higkeit in kleinsten Formaten, mit geringsten Energien und zu g{\"u}nstigen Preisen nutzbringend in unser privates und berufliches Umfeld einzubringen. Beispiele sind Notebook-PC, PDA, Handy und das Navigationßystem im Auto. Aber auch eingebettete Elektronik in Komponenten, Ger{\"a}ten und Systemen ist nunmehr zur Selbstverst{\"a}ndlichkeit geworden. Bekannte Beispiele aus der Haustechnik sind Mikroprozeßoren in Heizungs- und Alarmanlagen und aber auch in Komponenten wie Brand- und Bewegungsmelder. Wir n{\"a}hern uns dem vor einigen Jahren noch als Vision bezeichneten Zustand der {\"u}berall vorhandenen elektronischen Rechenleistung (engl. ubiquitous computing) bzw. des von Informationsverarbeitung durchdrungenen t{\"a}glichen Umfelds (engl. pervasive computing). Werden die TGA-Komponenten genau wie die gr{\"o}ßeren Computerkomponenten (z.B. PCs, Server) {\"u}ber Datenschnittstellen zu r{\"a}umlich verteilten Netzwerken verkn{\"u}pft (z.B. Internet, Intranet) und mit einer system{\"u}bergreifenden und ad{\"a}quaten Intelligenz (Software) programmiert, so k{\"o}nnen neuartige Funktionalit{\"a}ten im jeweiligen Anwendungsumfeld (engl. ambient intelligence, kurz AmI, [1]) entstehen. Hier liegt bei Geb{\"a}uden und R{\"a}umen speziell eine große Chance, die bislang einer ganzheitlichen Systemkonzeption unter Einschluß von Architektur, Geb{\"a}udephysik, technischer Geb{\"a}udeausr{\"u}stung (TGA) und Geb{\"a}udeautomation (GA) im Wege stehende Gewerketrennung zu {\"u}berwinden. Es entstehen f{\"u}r div. Anwendungszwecke systemisch integrierte >smart areas< (nach Prof. Becker, FH Biberach). Im vorliegenden Beitrag erl{\"a}uterte Beispiele f{\"u}r AmI-L{\"o}sungen im Immobilienbereich sind Raumsysteme zur automatischen und sicheren Erkennung von Notf{\"a}llen, z.B. in Pflegeheimen; sich automatisch an die Nutzung und den Nutzer bzgl. Klima und Beleuchtung adaptierende Raumsysteme im B{\"u}ro- oder Hotelbereich und die elektronische Aßistenz des Bau- und Betriebsprozeßes von Geb{\"a}uden. Im Duisburger inHaus-Innovationszentrum f{\"u}r Intelligente Raum- und Geb{\"a}udesysteme der Fraunhofer-Gesellschaft wurden in den letzten Jahren erste L{\"o}sungen mit diesem neuartigen Ansatz konzipiert, entwickelt und erprobt. Der Beitrag beschreibt nach einer kurzen Skizzierung des Ambient-Intelligence-Ansatzes an Beispielen M{\"o}glichkeiten f{\"u}r den Transfer dieser neuen Technologie in den Raum- und Geb{\"a}udebereich. Es folgt eine abschließende Zusammenfaßung und eine Einsch{\"a}tzung der Zukunftspotenziale der Ambient Intelligence in Raum und Bau.}, subject = {Architektur }, language = {de} } @inproceedings{ErlemannHartmann, author = {Erlemann, Kai and Hartmann, Dietrich}, title = {PARALLELIZATION OF A MICROSCOPIC TRAFFIC SIMULATION SYSTEM USING MPIJAVA}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2951}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29516}, pages = {8}, abstract = {Traffic simulation is a valuable tool for the design and evaluation of road networks. Over the years, the level of detail to which urban and freeway traffic can be simulated has increased steadily, shifting from a merely qualitative macroscopic perspective to a very detailed microscopic view, where the behavior of individual vehicles is emulated realistically. With the improvement of behavioral models, however, the computational complexity has also steadily increased, as more and more aspects of real-life traffic have to be considered by the simulation environment. Despite the constant increase in computing power of modern personal computers, microscopic simulation stays computationally expensive, limiting the maximum network size than can be simulated on a single-processor computer in reasonable time. Parallelization can distribute the computing load from a single computer system to a cluster of several computing nodes. To this end, the exisiting simulation framework had to be adapted to allow for a distributed approach. As the simulation is ultimately targeted to be executed in real-time, incorporating real traffic data, only a spatial partition of the simulation was considered, meaning the road network has to be partitioned into subnets of comparable complexity, to ensure a homogenous load balancing. The partition process must also ensure, that the division between subnets does only occur in regions, where no strong interaction between the separated road segments occurs (i.e. not in the direct vicinity of junctions). In this paper, we describe a new microscopic reasoning voting strategy, and discuss in how far the increasing computational costs of these more complex behaviors lend themselves to a parallelized approach. We show the parallel architecture employed, the communication between computing units using MPIJava, and the benefits and pitfalls of adapting a single computer application to be used on a multi-node computing cluster.}, subject = {Architektur }, language = {en} } @inproceedings{Muschalla, author = {Muschalla, Dirk}, title = {OPTIMIZATION OF WATER RESOURCES SYSTEMS USING MULTI-OBJECTIVE EVOLUTION STRATEGIES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2995}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29953}, pages = {10}, abstract = {This paper deals with the development of a new multi-objective evolution strategy in combination with an integrated pollution-load and water-quality model. The optimization algorithm combines the advantages of the Non-Dominated Sorting Genetic Algorithm and Self-Adaptive Evolution Strategies. The identification of a good spread of solutions on the pareto-optimum front and the optimization of a large number of decision variables equally demands numerous simulation runs. In addition, statements with regard to the frequency of critical concentrations and peak discharges require continuous long-term simulations. Therefore, a fast operating integrated simulation model is needed providing the required precision of the results. For this purpose, a hydrological deterministic pollution-load model has been coupled with a river water-quality and a rainfall-runoff model. Wastewater treatment plants are simulated in a simplified way. The functionality of the optimization and simulation tool has been validated by analyzing a real catchment area including sewer system, WWTP, water body and natural river basin. For the optimization/rehabilitation of the urban drainage system, both innovative and approved measures have been examined and used as decision variables. As objective functions, investment costs and river water quality criteria have been used.}, subject = {Architektur }, language = {en} } @inproceedings{EblingScheuermann, author = {Ebling, Julia and Scheuermann, G.}, title = {TEMPLATE MATCHING ON VECTOR FIELDS USING CLIFFORD ALGEBRA}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2946}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29464}, pages = {25}, abstract = {Due to the amount of flow simulation and measurement data, automatic detection, classification and visualization of features is necessary for an inspection. Therefore, many automated feature detection methods have been developed in recent years. However, only one feature class is visualized afterwards in most cases, and many algorithms have problems in the presence of noise or superposition effects. In contrast, image processing and computer vision have robust methods for feature extraction and computation of derivatives of scalar fields. Furthermore, interpolation and other filter can be analyzed in detail. An application of these methods to vector fields would provide a solid theoretical basis for feature extraction. The authors suggest Clifford algebra as a mathematical framework for this task. Clifford algebra provides a unified notation for scalars and vectors as well as a multiplication of all basis elements. The Clifford product of two vectors provides the complete geometric information of the relative positions of these vectors. Integration of this product results in Clifford correlation and convolution which can be used for template matching of vector fields. For frequency analysis of vector fields and the behavior of vector-valued filters, a Clifford Fourier transform has been derived for 2D and 3D. Convolution and other theorems have been proved, and fast algorithms for the computation of the Clifford Fourier transform exist. Therefore the computation of Clifford convolution can be accelerated by computing it in Clifford Fourier domain. Clifford convolution and Fourier transform can be used for a thorough analysis and subsequent visualization of flow fields.}, subject = {Architektur }, language = {en} } @inproceedings{EbertLenzen, author = {Ebert, Carsten and Lenzen, Armin}, title = {OUTPUT-ONLY ANALYSIS FOR EXPERIMENTAL DAMAGE DETECTION OF A TIED-ARCH BRIDGE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2945}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29452}, pages = {13}, abstract = {In civil engineering it is very difficult and often expensive to excite constructions such as bridges and buildings with an impulse hammer or shaker. This problem can be avoided with the output-only method as special feature of stochastic system identification. The permanently existing ambient noise (e.g. wind, traffic, waves) is sufficient to excite the structures in their operational conditions. The output-only method is able to estimate the observable part of a state-space-model which contains the dynamic characteristics of the measured mechanical system. Because of the assumption that the ambient excitation is white there is no requirement to measure the input. Another advantage of the output-only method is the possibility to get high detailed models by a special method, called polyreference setup. To pretend the availability of a much larger set of sensors the data from varying sensor locations will be collected. Several successive data sets are recorded with sensors at different locations (moving sensors) and fixed locations (reference sensors). The covariance functions of the reference sensors are bases to normalize the moving sensors. The result of the following subspace-based system identification is a high detailed black-box-model that contains the weighting function including the well-known dynamic parameters eigenfrequencies and mode shapes of the mechanical system. Emphasis of this lecture is the presentation of an extensive damage detection experiment. A 53-year old prestressed concrete tied-arch-bridge in H{\"u}nxe (Germany) was deconstructed in 2005. Preliminary numerous vibration measurements were accomplished. The first experiment for system modification was an additional support near the bridge bearing of one main girder. During a further experiment one hanger from one tied arch was cut through as an induced damage. Some first outcomes of the described experiments will be presented.}, subject = {Architektur }, language = {en} } @inproceedings{SampaioHenriquesStuderetal., author = {Sampaio, Alcinia Zita and Henriques, Pedro and Studer, P. and Luizi, Rui}, title = {VIRTUAL REALITY TECHNOLOGY TO REPRESENT CONSTRUCTION ACTIVITIES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30090}, pages = {9}, abstract = {The use of virtual reality techniques in the development of educational applications brings new perspectives to the teaching of subjects related to the field of civil construction in Civil Engineering domain. In order to obtain models, which would be able to visually simulate the construction process of two types of construction work, the research turned to the techniques of geometric modelling and virtual reality. The applications developed for this purpose are concerned with the construction of a cavity wall and a bridge. These models make it possible to view the physical evolution of the work, to follow the planned construction sequence and to visualize details of the form of every component of the works. They also support the study of the type and method of operation of the equipment necessary for these construction procedures. These models have been used to distinct advantage as educational aids in first-degree courses in Civil Engineering. Normally, three-dimensional geometric models, which are used to present architectural and engineering works, show only their final form, not allowing the observation of their physical evolution. The visual simulation of the construction process needs to be able to produce changes to the geometry of the project dynamically. In the present study, two engineering construction work models were created, from which it was possible to obtain three-dimensional models corresponding to different states of their form, simulating distinct stages in their construction. Virtual reality technology was applied to the 3D models. Virtual reality capacities allow the interactive real-time viewing of 3D building models and facilitate the process of visualizing, evaluating and communicating.}, subject = {Architektur }, language = {en} } @inproceedings{BrackxDeSchepperSommen, author = {Brackx, Fred and De Schepper, Nele and Sommen, Frank}, title = {Clifford-Hermite and Two-Dimensional Clifford-Gabor Filters For Early Vision}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2930}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29303}, pages = {22}, abstract = {Image processing has been much inspired by the human vision, in particular with regard to early vision. The latter refers to the earliest stage of visual processing responsible for the measurement of local structures such as points, lines, edges and textures in order to facilitate subsequent interpretation of these structures in higher stages (known as high level vision) of the human visual system. This low level visual computation is carried out by cells of the primary visual cortex. The receptive field profiles of these cells can be interpreted as the impulse responses of the cells, which are then considered as filters. According to the Gaussian derivative theory, the receptive field profiles of the human visual system can be approximated quite well by derivatives of Gaussians. Two mathematical models suggested for these receptive field profiles are on the one hand the Gabor model and on the other hand the Hermite model which is based on analysis filters of the Hermite transform. The Hermite filters are derivatives of Gaussians, while Gabor filters, which are defined as harmonic modulations of Gaussians, provide a good approximation to these derivatives. It is important to note that, even if the Gabor model is more widely used than the Hermite model, the latter offers some advantages like being an orthogonal basis and having better match to experimental physiological data. In our earlier research both filter models, Gabor and Hermite, have been developed in the framework of Clifford analysis. Clifford analysis offers a direct, elegant and powerful generalization to higher dimension of the theory of holomorphic functions in the complex plane. In this paper we expose the construction of the Hermite and Gabor filters, both in the classical and in the Clifford analysis framework. We also generalize the concept of complex Gaussian derivative filters to the Clifford analysis setting. Moreover, we present further properties of the Clifford-Gabor filters, such as their relationship with other types of Gabor filters and their localization in the spatial and in the frequency domain formalized by the uncertainty principle.}, subject = {Architektur }, language = {en} } @inproceedings{BrackxDeKnockDeSchepper, author = {Brackx, Fred and De Knock, B. and De Schepper, Hennie}, title = {A MULTI--DIMENSIONAL HILBERT TRANSFORM IN ANISOTROPIC CLIFFORD ANALYSIS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2929}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29297}, pages = {15}, abstract = {In earlier research, generalized multidimensional Hilbert transforms have been constructed in m-dimensional Euclidean space, in the framework of Clifford analysis. Clifford analysis, centred around the notion of monogenic functions, may be regarded as a direct and elegant generalization to higher dimension of the theory of the holomorphic functions in the complex plane. The considered Hilbert transforms, usually obtained as a part of the boundary value of an associated Cauchy transform in m+1 dimensions, might be characterized as isotropic, since the metric in the underlying space is the standard Euclidean one. In this paper we adopt the idea of a so-called anisotropic Clifford setting, which leads to the introduction of a metric dependent m-dimensional Hilbert transform, showing, at least formally, the same properties as the isotropic one. The Hilbert transform being an important tool in signal analysis, this metric dependent setting has the advantage of allowing the adjustment of the co-ordinate system to possible preferential directions in the signals to be analyzed. A striking result to be mentioned is that the associated anisotropic (m+1)-dimensional Cauchy transform is no longer uniquely determined, but may stem from a diversity of (m+1)-dimensional "mother" metrics.}, subject = {Architektur }, language = {en} } @inproceedings{BrackxDeSchepperDeSchepperetal., author = {Brackx, Fred and De Schepper, Hennie and De Schepper, Nele and Sommen, Frank}, title = {HERMITIAN CLIFFORD-HERMITE WAVELETS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2931}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29313}, pages = {13}, abstract = {The one-dimensional continuous wavelet transform is a successful tool for signal and image analysis, with applications in physics and engineering. Clifford analysis offers an appropriate framework for taking wavelets to higher dimension. In the usual orthogonal case Clifford analysis focusses on monogenic functions, i.e. null solutions of the rotation invariant vector valued Dirac operator ∂, defined in terms of an orthogonal basis for the quadratic space Rm underlying the construction of the Clifford algebra R0,m. An intrinsic feature of this function theory is that it encompasses all dimensions at once, as opposed to a tensorial approach with products of one-dimensional phenomena. This has allowed for a very specific construction of higher dimensional wavelets and the development of the corresponding theory, based on generalizations of classical orthogonal polynomials on the real line, such as the radial Clifford-Hermite polynomials introduced by Sommen. In this paper, we pass to the Hermitian Clifford setting, i.e. we let the same set of generators produce the complex Clifford algebra C2n (with even dimension), which we equip with a Hermitian conjugation and a Hermitian inner product. Hermitian Clifford analysis then focusses on the null solutions of two mutually conjugate Hermitian Dirac operators which are invariant under the action of the unitary group. In this setting we construct new Clifford-Hermite polynomials, starting in a natural way from a Rodrigues formula which now involves both Dirac operators mentioned. Due to the specific features of the Hermitian setting, four different types of polynomials are obtained, two types of even degree and two types of odd degree. These polynomials are used to introduce a new continuous wavelet transform, after thorough investigation of all necessary properties of the involved polynomials, the mother wavelet and the associated family of wavelet kernels.}, subject = {Architektur }, language = {en} } @inproceedings{WittwerBecker, author = {Wittwer, Christof and Becker, Rainer}, title = {MODELLBASIERTE ERTRAGSKONTROLLE F{\"U}R PV ANLAGEN IN VERNETZTEN GEB{\"A}UDEN}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.3036}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-30363}, pages = {5}, abstract = {Subject of the paper is the realisation of a model based efficiency control system for PV generators using a simulation model. A standard 2-diodes model of PV generator is base of the ColSim model, which is implemented in ANSI C code for flexible code exporting. The algorithm is based on discretisized U-I characteristics, which allows the calculation of string topologies witch parallel and serial PV cells and modules. Shadowing effects can be modelled down to cell configuration using polar horizon definitions. The simulation model was ported to a real time environment, to calculate the efficiency of a PV system. Embedded System technology allows the networked operation and the integration of standard I/O devices. Futher work focus on the adaption of shadowing routine, which will be adapted to get the environment conditions from the real operation.}, subject = {Architektur }, language = {de} } @inproceedings{Geyer, author = {Geyer, Philipp}, title = {MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION: AN EXEMPLARY OFFICE BUILDING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2957}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29574}, pages = {10}, abstract = {The mathematical and technical foundations of optimization have been developed to a large extent. In the design of buildings, however, optimization is rarely applied because of insufficient adaptation of this method to the needs of building design. The use of design optimization requires the consideration of all relevant objectives in an interactive and multidisciplinary process. Disciplines such as structural, light, and thermal engineering, architecture, and economics impose various objectives on the design. A good solution calls for a compromise between these often contradictory objectives. This presentation outlines a method for the application of Multidisciplinary Design Optimization (MDO) as a tool for the designing of buildings. An optimization model is established considering the fact that in building design the non-numerical aspects are of major importance than in other engineering disciplines. A component-based decomposition enables the designer to manage the non-numerical aspects in an interactive design optimization process. A fa{\c{c}}ade example demonstrates a way how the different disciplines interact and how the components integrate the disciplines in one optimization model. In this grid-based fa{\c{c}}ade example, the materials switch between a discrete number of materials and construction types. For light and thermal engineering, architecture, and economics, analysis functions calculate the performance; utility functions serve as an important means for the evaluation since not every increase or decrease of a physical value improves the design. For experimental purposes, a genetic algorithm applied to the exemplary model demonstrates the use of optimization in this design case. A component-based representation first serves to manage non-numerical characteristics such as aesthetics. Furthermore, it complies with usual fabrication methods in building design and with object-oriented data handling in CAD. Therefore, components provide an important basis for an interactive MDO process in building design.}, subject = {Architektur }, language = {en} } @inproceedings{ChangChang, author = {Chang, Wei-Tsang and Chang, Teng-Wen}, title = {TIME-BASED FORM TRANSFORMATION WITH FOLDING SPACE}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2937}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29371}, pages = {10}, abstract = {Design activity could be treated as state transition computationally. In stepwise processing, in-between form-states are not easily observed. However, in this research time-based concept is introduced and applied in order to bridge the gap. In architecture, folding is one method of form manipulation and architects also want to search for alternatives by this operation. Besides, folding operation has to be defined and parameterized before time factor is involved as a variable of folding. As a result, time-based transformation provides sequential form states and redirects design activity.}, subject = {Architektur }, language = {en} } @inproceedings{Kisil, author = {Kisil, Vladimir}, title = {FILLMORE-SPRINGER-CNOPS CONSTRUCTION IMPLEMENTED IN GINAC}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2974}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29744}, pages = {103}, abstract = {This is an implementation of the Fillmore-Springer-Cnops construction (FSCc) based on the Clifford algebra capacities of the GiNaC computer algebra system. FSCc linearises the linear-fraction action of the Mobius group. This turns to be very useful in several theoretical and applied fields including engineering. The core of this realisation of FSCc is done for an arbitrary dimension, while a subclass for two dimensional cycles add some 2D-specific routines including a visualisation to PostScript files through the MetaPost or Asymptote software. This library is a backbone of many result published in, which serve as illustrations of its usage. It can be ported (with various level of required changes) to other CAS with Clifford algebras capabilities.}, subject = {Architektur }, language = {en} }