@article{BielikSchneiderKuligaetal., author = {Bielik, Martin and Schneider, Sven and Kuliga, Saskia and Griego, Danielle and Ojha, Varun and K{\"o}nig, Reinhard and Schmitt, Gerhard and Donath, Dirk}, title = {Examining Trade-Offs between Social, Psychological, and Energy Potential of Urban Form}, series = {ISPRS International Journal of Geo-Information}, volume = {2019}, journal = {ISPRS International Journal of Geo-Information}, editor = {Resch, Bernd and Szell, Michael}, doi = {10.3390/ijgi8020052}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190408-38695}, abstract = {Urban planners are often challenged with the task of developing design solutions which must meet multiple, and often contradictory, criteria. In this paper, we investigated the trade-offs between social, psychological, and energy potential of the fundamental elements of urban form: the street network and the building massing. Since formal mehods to evaluate urban form from the psychological and social point of view are not readily available, we developed a methodological framework to quantify these criteria as the first contribution in this paper. To evaluate the psychological potential, we conducted a three-tiered empirical study starting from real world environments and then abstracting them to virtual environments. In each context, the implicit (physiological) response and explicit (subjective) response of pedestrians were measured. To quantify the social potential, we developed a street network centrality-based measure of social accessibility. For the energy potential, we created an energy model to analyze the impact of pure geometric form on the energy demand of the building stock. The second contribution of this work is a method to identify distinct clusters of urban form and, for each, explore the trade-offs between the select design criteria. We applied this method to two case studies identifying nine types of urban form and their respective potential trade-offs, which are directly applicable for the assessment of strategic decisions regarding urban form during the early planning stages.}, subject = {Planung}, language = {en} } @article{XinHijaziKoenigetal., author = {Xin, Li and Hijazi, Ihab Hamzi and K{\"o}nig, Reinhard and Lv, Zhihan and Zhong, Chen and Schmitt, Gerhard}, title = {Assessing Essential Qualities of Urban Space with Emotional and Visual Data Based on GIS Technique}, series = {ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION}, journal = {ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION}, doi = {10.3390/ijgi5110218}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170401-30995}, abstract = {Finding a method to evaluate people's emotional responses to urban spaces in a valid and objective way is fundamentally important for urban design practices and related policy making. Analysis of the essential qualities of urban space could be made both more effective and more accurate using innovative information techniques that have become available in the era of big data. This study introduces an integrated method based on geographical information systems (GIS) and an emotion-tracking technique to quantify the relationship between people's emotional responses and urban space. This method can evaluate the degree to which people's emotional responses are influenced by multiple urban characteristics such as building shapes and textures, isovist parameters, visual entropy, and visual fractals. The results indicate that urban spaces may influence people's emotional responses through both spatial sequence arrangements and shifting scenario sequences. Emotional data were collected with body sensors and GPS devices. Spatial clustering was detected to target effective sampling locations; then, isovists were generated to extract building textures. Logistic regression and a receiver operating characteristic analysis were used to determine the key isovist parameters and the probabilities that they influenced people's emotion. Finally, based on the results, we make some suggestions for design professionals in the field of urban space optimization.}, subject = {Stadt}, language = {en} } @inproceedings{BauriedelDonathKoenig, author = {Bauriedel, Christian and Donath, Dirk and K{\"o}nig, Reinhard}, title = {COMPUTER-SUPPORTED SIMULATIONS FOR URBAN PLANNING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, doi = {10.25643/bauhaus-universitaet.2923}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170327-29235}, pages = {10}, abstract = {The idea about a simulation program to support urban planning is explained: Four different, clearly defined developing paths can be calculated for the rebuilding of a shrinking town. Aided by self-organization principles, a complex system can be created. The dynamics based on the action patterns of single actors, whose behaviour is cyclically depends on the generated structure. Global influences, which control the development, can be divided at a spatial, socioeconomic, and organizational-juridical level. The simulation model should offer conclusions on new planning strategies, especially in the context of the creation process of rebuilding measures. An example of a transportation system is shown by means of prototypes for the visualisation of the dynamic development process.}, subject = {Architektur }, language = {en} } @article{KnechtKoenig, author = {Knecht, Katja and K{\"o}nig, Reinhard}, title = {Automatische Grundst{\"u}cksumlegung mithilfe von Unterteilungsalgorithmen und typenbasierte Generierung von Stadtstrukturen}, doi = {10.25643/bauhaus-universitaet.2673}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160822-26730}, abstract = {Dieses Arbeitspapier beschreibt, wie ausgehend von einem vorhandenen Straßennetzwerk Bebauungsareale mithilfe von Unterteilungsalgorithmen automatisch umgelegt, d.h. in Grundst{\"u}cke unterteilt, und anschließend auf Basis verschiedener st{\"a}dtebaulicher Typen bebaut werden k{\"o}nnen. Die Unterteilung von Bebauungsarealen und die Generierung von Bebauungsstrukturen unterliegen dabei bestimmten stadtplanerischen Einschr{\"a}nkungen, Vorgaben und Parametern. Ziel ist es aus den dargestellten Untersuchungen heraus ein Vorschlagssystem f{\"u}r stadtplanerische Entw{\"u}rfe zu entwickeln, das anhand der Umsetzung eines ersten Softwareprototyps zur Generierung von Stadtstrukturen weiter diskutiert wird.}, subject = {Automatisierung}, language = {de} } @article{KoehlerKoenig, author = {K{\"o}hler, Hermann and K{\"o}nig, Reinhard}, title = {Aktionsr{\"a}ume in Dresden}, doi = {10.25643/bauhaus-universitaet.2672}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160822-26726}, abstract = {In vorliegender Studie werden die Aktionsr{\"a}ume von Befragten in Dresden {\"u}ber eine standardisierte Befragung (n=360) untersucht. Die den Aktionsr{\"a}umen zugrundeliegenden Aktivit{\"a}ten werden unterschieden in Einkaufen f{\"u}r den t{\"a}glichen Bedarf, Ausgehen (z.B. in Caf{\´e}, Kneipe, Gastst{\"a}tte), Erholung im Freien (z.B. spazieren gehen, Nutzung von Gr{\"u}nanlagen) und private Geselligkeit (z.B. Feiern, Besuch von Verwandten/Freunden). Der Aktionsradius wird unterschieden in Wohnviertel, Nachbarviertel und sonstiges weiteres Stadtgebiet. Um aus den vier betrachteten Aktivit{\"a}ten einen umfassenden Kennwert f{\"u}r den durchschnittlichen Aktionsradius eines Befragten zu bilden, wird ein Modell f{\"u}r den Kennwert eines Aktionsradius entwickelt. Die Studie kommt zu dem Ergebnis, dass das Alter der Befragten einen signifikanten - wenn auch geringen - Einfluss auf den Aktionsradius hat. Das Haushaltsnettoeinkommen hat einen mit Einschr{\"a}nkung signifikanten, ebenfalls geringen Einfluss auf allt{\"a}gliche Aktivit{\"a}ten der Befragten.}, subject = {Aktionsraumforschung}, language = {de} } @article{KoenigBauriedel, author = {K{\"o}nig, Reinhard and Bauriedel, Christian}, title = {Generating settlement structures: a method for urban planning and analysis supported by cellular automata}, series = {Environment and Planning B: Planning and Design}, journal = {Environment and Planning B: Planning and Design}, doi = {10.25643/bauhaus-universitaet.2605}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160624-26054}, pages = {602 -- 624}, abstract = {Previous models for the explanation of settlement processes pay little attention to the interactions between settlement spreading and road networks. On the basis of a dielectric breakdown model in combination with cellular automata, we present a method to steer precisely the generation of settlement structures with regard to their global and local density as well as the size and number of forming clusters. The resulting structures depend on the logic of how the dependence of the settlements and the road network is implemented to the simulation model. After analysing the state of the art we begin with a discussion of the mutual dependence of roads and land development. Next, we elaborate a model that permits the precise control of permeability in the developing structure as well as the settlement density, using the fewest necessary control parameters. On the basis of different characteristic values, possible settlement structures are analysed and compared with each other. Finally, we reflect on the theoretical contribution of the model with regard to the context of urban dynamics.}, language = {en} } @inproceedings{KoenigBauriedel, author = {K{\"o}nig, Reinhard and Bauriedel, Christian}, title = {Computer-generated Urban Structures}, series = {Proceedings of the Generative Art Conference}, booktitle = {Proceedings of the Generative Art Conference}, address = {Milan, Italy}, doi = {10.25643/bauhaus-universitaet.2609}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160623-26090}, pages = {1 -- 10}, abstract = {How does it come to particular structure formations in the cities and which strengths play a role in this process? On which elements can the phenomena be reduced to find the respective combination rules? How do general principles have to be formulated to be able to describe the urban processes so that different structural qualities can be produced? With the aid of mathematic methods, models based on four basic levels are generated in the computer, through which the connections between the elements and the rules of their interaction can be examined. Conclusions on the function of developing processes and the further urban origin can be derived.}, language = {en} } @article{Koenig, author = {K{\"o}nig, Reinhard}, title = {Die Stadt der Agenten und Automaten}, series = {FORUM - Architektur \& Bauforum}, journal = {FORUM - Architektur \& Bauforum}, doi = {10.25643/bauhaus-universitaet.2608}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26083}, abstract = {PLANUNGSUNTERST{\"U}TZUNG DURCH DIE ANALYSE R{\"A}UMLICHER PROZESSE MITTELS COMPUTERSIMULATIONEN. Erst wenn man - zumindest im Prinzip - versteht, wie eine Stadt mit ihren komplexen, verwobenen Vorg{\"a}ngen im Wesentlichen funktioniert, ist eine sinnvolle Stadtplanung m{\"o}glich. Denn jede Planung bedeutet einen Eingriff in den komplexen Organismus einer Stadt. Findet dieser Eingriff ohne Wissen {\"u}ber die Funktionsweise des Organismus statt, k{\"o}nnen auch die Auswirkungen nicht abgesch{\"a}tzt werden. Dieser Beitrag stellt dar, wie urbane Prozesse mittels Computersimulationen unter Zuhilfenahme so genannter Multi-Agenten-Systeme und Zellul{\"a}rer Automaten verstanden werden k{\"o}nnen. von}, subject = {CAD}, language = {de} } @article{Koenig, author = {K{\"o}nig, Reinhard}, title = {Computers in the design phase - Ten thesis on their uselessness}, series = {Der Generalist}, journal = {Der Generalist}, doi = {10.25643/bauhaus-universitaet.2607}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26075}, abstract = {At the end of the 1960s, architects at various universities world- wide began to explore the potential of computer technology for their profession. With the decline in prices for PCs in the 1990s and the development of various computer-aided architectural design systems (CAAD), the use of such systems in architectural and planning offices grew continuously. Because today no ar- chitectural office manages without a costly CAAD system and because intensive soſtware training has become an integral part of a university education, the question arises about what influence the various computer systems have had on the design process forming the core of architectural practice. The text at hand devel- ops ten theses about why there has been no success to this day in introducing computers such that new qualitative possibilities for design result. RESTRICTEDNESS}, subject = {CAD}, language = {en} } @inproceedings{KoenigMueller, author = {K{\"o}nig, Reinhard and M{\"u}ller, Daniela}, title = {Simulating the development of residential areas of the city of Vienna from 1888 to 2001}, series = {Compendium of Abstracts of the 8th International Conference on Urban Planning and Environment (UPE8)}, booktitle = {Compendium of Abstracts of the 8th International Conference on Urban Planning and Environment (UPE8)}, address = {Kaiserslautern, Germany}, doi = {10.25643/bauhaus-universitaet.2606}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26066}, pages = {23}, abstract = {The structure and development of cities can be seen and evaluated from different points of view. By replicating the growth or shrinkage of a city using historical maps depicting different time states, we can obtain momentary snapshots of the dynamic mechanisms of the city. An examination of how these snapshots change over the course of time and a comparison of the different static time states reveals the various interdependencies of population density, technical infrastructure and the availability of public transport facilities. Urban infrastructure and facilities are not distributed evenly across the city - rather they are subject to different patterns and speeds of spread over the course of time and follow different spatial and temporal regularities. The reasons and underlying processes that cause the transition from one state to another result from the same recurring but varyingly pronounced hidden forces and their complex interactions. Such forces encompass a variety of economic, social, cultural and ecological conditions whose respective weighting defines the development of a city in general. Urban development is, however, not solely a product of the different spatial distribution of economic, legal or social indicators but also of the distribution of infrastructure. But to what extent is the development of a city affected by the changing provision of infrastructure? As}, subject = {Simulation}, language = {en} } @inproceedings{KoenigVaroudis, author = {K{\"o}nig, Reinhard and Varoudis, Tasos}, title = {Spatial Optimizations: Merging depthmapX , spatial graph networks and evolutionary design in Grasshopper}, series = {Proceedings of ecaade 34: Complexity \& Simplicity}, booktitle = {Proceedings of ecaade 34: Complexity \& Simplicity}, address = {Oulu, Finland}, doi = {10.25643/bauhaus-universitaet.2604}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26040}, pages = {1 -- 6}, abstract = {In the Space Syntax community, the standard tool for computing all kinds of spatial graph network measures is depthmapX (Turner, 2004; Varoudis, 2012). The process of evaluating many design variants of networks is relatively complicated, since they need to be drawn in a separated CAD system, exported and imported in depthmapX via dxf file format. This procedure disables a continuous integration into a design process. Furthermore, the standalone character of depthmapX makes it impossible to use its network centrality calculation for optimization processes. To overcome this limitations, we present in this paper the first steps of experimenting with a Grasshopper component (reference omitted until final version) that can access the functions of depthmapX and integrate them into Grasshopper/Rhino3D. Here the component is implemented in a way that it can be used directly for an evolutionary algorithm (EA) implemented in a Python scripting component in Grasshopper}, language = {en} } @article{TreyerKleinKoenigetal., author = {Treyer, Lukas and Klein, Bernhard and K{\"o}nig, Reinhard and Meixner, Christine}, title = {Lightweight Urban Computation Interchange (LUCI): A System to Couple Heterogenous Simulations and Views}, series = {Spatial Information Research}, journal = {Spatial Information Research}, doi = {10.25643/bauhaus-universitaet.2603}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26037}, pages = {1 -- 12}, abstract = {In this paper we introduce LUCI, a Lightweight Urban Calculation Interchange system, designed to bring the advantages of calculation and content co-ordination system to small planning and design groups by the means of an open source middle-ware. The middle-ware focuses on problems typical to urban planning and therefore features a geo-data repository as well as a job runtime administration, to coordinate simulation models and its multiple views. The described system architecture is accompanied by two exemplary use cases, that have been used to test and further develop our concepts and implementations.}, language = {en} } @article{HijaziKoenigSchneideretal., author = {Hijazi, Ihab Hamzi and K{\"o}nig, Reinhard and Schneider, Sven and Li, Xin and Bielik, Martin and Schmitt, Gerhard and Donath, Dirk}, title = {Geostatistical Analysis for the Study of Relationships between the Emotional Responses of Urban Walkers to Urban Spaces}, series = {International Journal of E-Planning Research}, journal = {International Journal of E-Planning Research}, doi = {10.25643/bauhaus-universitaet.2602}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26025}, pages = {1 -- 19}, abstract = {The described study aims to find correlations between urban spatial configurations and human emotions. To this end, the authors measured people's emotions while they walk along a path in an urban area using an instrument that measures skin conductance and skin temperature. The corresponding locations of the test persons were measured recorded by using a GPS-tracker (n=13). The results are interpreted and categorized as measures for positive and negative emotional arousal. To evaluate the technical and methodological process. The test results offer initial evidence that certain spaces or spatial sequences do cause positive or negative emotional arousal while others are relatively neutral. To achieve the goal of the study, the outcome was used as a basis for the study of testing correlations between people's emotional responses and urban spatial configurations represented by Isovist properties of the urban form. By using their model the authors can explain negative emotional arousal for certain places, but they couldn't find a model to predict emotional responses for individual spatial configurations.}, subject = {Geografie}, language = {en} } @article{KleinKoenig, author = {Klein, Bernhard and K{\"o}nig, Reinhard}, title = {Computational Urban Planning: Using the Value Lab as Control Center}, series = {FCL Magazine, Special Issue Simulation Platform}, journal = {FCL Magazine, Special Issue Simulation Platform}, doi = {10.25643/bauhaus-universitaet.2601}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26011}, pages = {38 -- 45}, abstract = {Urban planning involves many aspects and various disciplines, demanding an asynchronous planning approach. The level of complexity rises with each aspect to be considered and makes it difficult to find universally satisfactory solutions. To improve this situation we propose a new approach, which complement traditional design methods with a computational urban plan- ning method that can fulfil formalizable design requirements automatically. Based on this approach we present a design space exploration framework for complex urban planning projects. For a better understanding of the idea of design space exploration, we introduce the concept of a digital scout which guides planners through the design space and assists them in their creative explorations. The scout can support planners during manual design by informing them about potential im- pacts or by suggesting different solutions that fulfill predefined quality requirements. The planner can change flexibly between a manually controlled and a completely automated design process. The developed system is presented using an exemplary urban planning scenario on two levels from the street layout to the placement of building volumes. Based on Self-Organizing Maps we implemented a method which makes it possible to visualize the multi-dimensional solution space in an easily analysable and comprehensible form.}, subject = {Stadtgestaltung}, language = {en} } @inproceedings{ChirkinKoenig, author = {Chirkin, Artem and K{\"o}nig, Reinhard}, title = {Concept of Interactive Machine Learning in Urban Design Problems : proceedings}, publisher = {ACM New York, NY, USA}, address = {San Jose, CA, USA}, doi = {10.25643/bauhaus-universitaet.2600}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-26000}, pages = {10 -- 13}, abstract = {This work presents a concept of interactive machine learning in a human design process. An urban design problem is viewed as a multiple-criteria optimization problem. The outlined feature of an urban design problem is the dependence of a design goal on a context of the problem. We model the design goal as a randomized fitness measure that depends on the context. In terms of multiple-criteria decision analysis (MCDA), the defined measure corresponds to a subjective expected utility of a user. In the first stage of the proposed approach we let the algorithm explore a design space using clustering techniques. The second stage is an interactive design loop; the user makes a proposal, then the program optimizes it, gets the user's feedback and returns back the control over the application interface.}, subject = {Stadtgestaltung}, language = {en} } @inproceedings{KoenigSchmitt, author = {K{\"o}nig, Reinhard and Schmitt, Gerhard}, title = {Backcasting and a new way of command in computational design : Proceedings}, series = {CAADence in Architecture Conference}, booktitle = {CAADence in Architecture Conference}, editor = {Szoboszlai, Mih{\´a}ly}, address = {Budapest}, doi = {10.25643/bauhaus-universitaet.2599}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-25996}, pages = {15 -- 25}, abstract = {It's not uncommon that analysis and simulation methods are used mainly to evaluate finished designs and to proof their quality. Whereas the potential of such methods is to lead or control a design process from the beginning on. Therefore, we introduce a design method that move away from a "what-if" forecasting philosophy and increase the focus on backcasting approaches. We use the power of computation by combining sophisticated methods to generate design with analysis methods to close the gap between analysis and synthesis of designs. For the development of a future-oriented computational design support we need to be aware of the human designer's role. A productive combination of the excellence of human cognition with the power of modern computing technology is needed. We call this approach "cognitive design computing". The computational part aim to mimic the way a designer's brain works by combining state-of-the-art optimization and machine learning approaches with available simulation methods. The cognition part respects the complex nature of design problems by the provision of models for human-computation interaction. This means that a design problem is distributed between computer and designer. In the context of the conference slogan "back to command", we ask how we may imagine the command over a cognitive design computing system. We expect that designers will need to let go control of some parts of the design process to machines, but in exchange they will get a new powerful command on complex computing processes. This means that designers have to explore the potentials of their role as commanders of partially automated design processes. In this contribution we describe an approach for the development of a future cognitive design computing system with the focus on urban design issues. The aim of this system is to enable an urban planner to treat a planning problem as a backcasting problem by defining what performance a design solution should achieve and to automatically query or generate a set of best possible solutions. This kind of computational planning process offers proof that the designer meets the original explicitly defined design requirements. A key way in which digital tools can support designers is by generating design proposals. Evolutionary multi-criteria optimization methods allow us to explore a multi-dimensional design space and provide a basis for the designer to evaluate contradicting requirements: a task urban planners are faced with frequently. We also reflect why designers will give more and more control to machines. Therefore, we investigate first approaches learn how designers use computational design support systems in combination with manual design strategies to deal with urban design problems by employing machine learning methods. By observing how designers work, it is possible to derive more complex artificial solution strategies that can help computers make better suggestions in the future.}, subject = {CAD}, language = {en} } @inproceedings{TreyerKleinKoenigetal., author = {Treyer, Lukas and Klein, Bernhard and K{\"o}nig, Reinhard and Meixner, Christine}, title = {Lightweight urban computation interchange (LUCI) system}, series = {Proceedings}, booktitle = {Proceedings}, publisher = {FOSS4G}, address = {Seoul, South Korea}, doi = {10.25643/bauhaus-universitaet.2598}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160622-25982}, pages = {12}, abstract = {In this paper we introduce LUCI, a Lightweight Urban Calculation Interchange system, designed to bring the advantages of a calculation and content co-ordination system to small planning and design groups by the means of an open source middle-ware. The middle-ware focuses on problems typical to urban planning and therefore features a geo-data repository as well as a job runtime administration, to coordinate simulation models and its multiple views. The described system architecture is accompanied by two exemplary use cases that have been used to test and further develop our concepts and implementations.}, language = {en} } @inproceedings{KoenigTreyerSchmitt, author = {K{\"o}nig, Reinhard and Treyer, Lukas and Schmitt, Gerhard}, title = {Graphical smalltalk with my optimization system for urban planning tasks}, series = {31st eCAADe Conference - Volume 2}, booktitle = {31st eCAADe Conference - Volume 2}, publisher = {TU Delft}, address = {Delft, Netherlands}, doi = {10.25643/bauhaus-universitaet.2517}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160121-25171}, pages = {195 -- 203}, abstract = {Based on the description of a conceptual framework for the representation of planning problems on various scales, we introduce an evolutionary design optimization system. This system is exemplified by means of the generation of street networks with locally defined properties for centrality. We show three different scenarios for planning requirements and evaluate the resulting structures with respect to the requirements of our framework. Finally the potentials and challenges of the presented approach are discussed in detail.}, subject = {St{\"a}dtebau}, language = {en} } @techreport{KoenigTapiasSchmitt, author = {K{\"o}nig, Reinhard and Tapias, Estefania and Schmitt, Gerhard}, title = {New Methods in Urban Analysis and Simulation: Documentation of teaching results from the autumn semester 2013}, doi = {10.25643/bauhaus-universitaet.2516}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160121-25168}, pages = {60}, abstract = {Documentation of teaching results from the autumn semester 2013 at ETH Zurich}, subject = {St{\"a}dtebau}, language = {en} } @techreport{KoenigTapiasSchmitt, author = {K{\"o}nig, Reinhard and Tapias, Estefania and Schmitt, Gerhard}, title = {New Methods in Urban Analysis and Simulation: Documentation of the teaching results from the spring semester 2014}, doi = {10.25643/bauhaus-universitaet.2515}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160121-25154}, pages = {62}, abstract = {Documentation of the teaching results from the spring semester 2014 at ETH Zurich}, subject = {St{\"a}dtebau}, language = {en} }