@phdthesis{Alkam, author = {Alkam, Feras}, title = {Vibration-based Monitoring of Concrete Catenary Poles using Bayesian Inference}, volume = {2021}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.4433}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210526-44338}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {177}, abstract = {This work presents a robust status monitoring approach for detecting damage in cantilever structures based on logistic functions. Also, a stochastic damage identification approach based on changes of eigenfrequencies is proposed. The proposed algorithms are verified using catenary poles of electrified railways track. The proposed damage features overcome the limitation of frequency-based damage identification methods available in the literature, which are valid to detect damage in structures to Level 1 only. Changes in eigenfrequencies of cantilever structures are enough to identify possible local damage at Level 3, i.e., to cover damage detection, localization, and quantification. The proposed algorithms identified the damage with relatively small errors, even at a high noise level.}, subject = {Parameteridentifikation}, language = {en} } @article{ReichertOlneyLahmer, author = {Reichert, Ina and Olney, Peter and Lahmer, Tom}, title = {Combined approach for optimal sensor placement and experimental verification in the context of tower-like structures}, series = {Journal of Civil Structural Health Monitoring}, volume = {2021}, journal = {Journal of Civil Structural Health Monitoring}, number = {volume 11}, publisher = {Heidelberg}, address = {Springer}, doi = {10.1007/s13349-020-00448-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210804-44701}, pages = {223 -- 234}, abstract = {When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures' models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain random/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that leads to a good estimate of the structure's behavior and model parameters without the need of preliminary measurements for model updating.}, subject = {Strukturmechanik}, language = {en} } @phdthesis{Goebel, author = {G{\"o}bel, Luise}, title = {Experimental and semi-analytical multiscale approaches for the characterization of the elastic and viscoelastic behavior of polymer-modified cement-based materials}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, isbn = {978-3-95773-269-9}, doi = {10.25643/bauhaus-universitaet.3827}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181211-38279}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {259}, abstract = {Polymer-modified cement concrete (PCC) is a heterogeneous building material with a hierarchically organized microstructure. Therefore, continuum micromechanics-based multiscale models represent a promising method to estimate the mechanical properties. By means of a bottom-up approach, homogenized properties at the macroscopic scale are derived considering microstructural characteristics. The extension of existing multiscale models for the application to PCC is the main objective of this work. For that, cross-scale experimental studies are required. Both macroscopic and microscopic mechanical tests are performed to characterize the elastic and viscoelastic properties of different PCC. The comparison between experiment and model prediction illustrates the success of the modeling approach.}, subject = {Elastizit{\"a}tsmodul}, language = {en} } @inproceedings{GoebelOsburgLahmer, author = {G{\"o}bel, Luise and Osburg, Andrea and Lahmer, Tom}, title = {STUDY OF ANALYTICAL MODELS OF THE MECHANICAL BEHAVIOR OF POLYMER-MODIFIED CONCRETE}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2797}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27973}, pages = {9}, abstract = {Polymer modification of mortar and concrete is a widely used technique in order to improve their durability properties. Hitherto, the main application fields of such materials are repair and restoration of buildings. However, due to the constant increment of service life requirements and the cost efficiency, polymer modified concrete (PCC) is also used for construction purposes. Therefore, there is a demand for studying the mechanical properties of PCC and entitative differences compared to conventional concrete (CC). It is significant to investigate whether all the assumed hypotheses and existing analytical formulations about CC are also valid for PCC. In the present study, analytical models available in the literature are evaluated. These models are used for estimating mechanical properties of concrete. The investigated property in this study is the modulus of elasticity, which is estimated with respect to the value of compressive strength. One existing database was extended and adapted for polymer-modified concrete mixtures along with their experimentally measured mechanical properties. Based on the indexed data a comparison between model predictions and experiments was conducted by calculation of forecast errors.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{JaouadiLahmer, author = {Jaouadi, Zouhour and Lahmer, Tom}, title = {Topology optimization of structures subjected to multiple load cases by introducing the Epsilon constraint method}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2804}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28042}, pages = {7}, abstract = {A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KavrakovTimmlerMorgenthal, author = {Kavrakov, Igor and Timmler, Hans-Georg and Morgenthal, Guido}, title = {STRUCTURAL OPTIMIZATION USING THE ENERGY METHOD WITH INTEGRAL MATERIAL BEHAVIOUR}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2806}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28065}, pages = {6}, abstract = {With the advances of the computer technology, structural optimization has become a prominent field in structural engineering. In this study an unconventional approach of structural optimization is presented which utilize the Energy method with Integral Material behaviour (EIM), based on the Lagrange's principle of minimum potential energy. The equilibrium condition with the EIM, as an alternative method for nonlinear analysis, is secured through minimization of the potential energy as an optimization problem. Imposing this problem as an additional constraint on a higher cost function of a structural property, a bilevel programming problem is formulated. The nested strategy of solution of the bilevel problem is used, treating the energy and the upper objective function as separate optimization problems. Utilizing the convexity of the potential energy, gradient based algorithms are employed for its minimization and the upper cost function is minimized using the gradient free algorithms, due to its unknown properties. Two practical examples are considered in order to prove the efficiency of the method. The first one presents a sizing problem of I steel section within encased composite cross section, utilizing the material nonlinearity. The second one is a discrete shape optimization of a steel truss bridge, which is compared to a previous study based on the Finite Element Method.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KhosravianWuttke, author = {Khosravian, Reza and Wuttke, Frank}, title = {QUALITATIVE INVESTIGATION OF THE EFFECT OF SOIL MODELING APPROACH ON DYNAMIC BEHAVIOR OF A SMALL-SCALE 2-DOF STRUCTURE WITH PILE FOUNDATION}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2808}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28080}, pages = {6}, abstract = {Known as a sophisticated phenomenon in civil engineering problems, soil structure interaction has been under deep investigations in the field of Geotechnics. On the other hand, advent of powerful computers has led to development of numerous numerical methods to deal with this phenomenon, resulting in a wide variety of methods trying to simulate the behavior of the soil stratum. This survey studies two common approaches to model the soil's behavior in a system consisting of a structure with two degrees of freedom, representing a two-storey frame structure made of steel, with the column resting on a pile embedded into sand in laboratory scale. The effect of soil simulation technique on the dynamic behavior of the structure is of major interest in the study. Utilized modeling approaches are the so-called Holistic method, and substitution of soil with respective impedance functions.}, subject = {Angewandte Informatik}, language = {en} } @article{AtaollahiOshkourTalebiSeyedShirazietal., author = {Ataollahi Oshkour, Azim and Talebi, Hossein and Seyed Shirazi, Seyed Farid and Bayat, Mehdi and Yau, Yat Huang and Tarlochan, Faris and Abu Osman, Noor Azuan}, title = {Comparison of various functionally graded femoral prostheses by finite element analysis}, series = {Scientific World Journal}, journal = {Scientific World Journal}, doi = {10.1155/2014/807621}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170413-31194}, abstract = {This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{MotraHildebrandDimmigOsburg, author = {Motra, Hem Bahadur and Hildebrand, J{\"o}rg and Dimmig-Osburg, Andrea}, title = {Assessment of strain measurement techniques to characterise mechanical properties of structural steel}, series = {Engineering Science and Technology, an International Journal}, journal = {Engineering Science and Technology, an International Journal}, doi = {10.1016/j.jestch.2014.07.006}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170425-31540}, pages = {260 -- 269}, abstract = {Strain measurement is important in mechanical testing. A wide variety of techniques exists for measuring strain in the tensile test; namely the strain gauge, extensometer, stress and strain determined by machine crosshead motion, Geometric Moire technique, optical strain measurement techniques and others. Each technique has its own advantages and disadvantages. The purpose of this study is to quantitatively compare the strain measurement techniques. To carry out the tensile test experiments for S 235, sixty samples were cut from the web of the I-profile in longitudinal and transverse directions in four different dimensions. The geometry of samples are analysed by 3D scanner and vernier caliper. In addition, the strain values were determined by using strain gauge, extensometer and machine crosshead motion. Three techniques of strain measurement are compared in quantitative manner based on the calculation of mechanical properties (modulus of elasticity, yield strength, tensile strength, percentage elongation at maximum force) of structural steel. A statistical information was used for evaluating the results. It is seen that the extensometer and strain gauge provided reliable data, however the extensometer offers several advantages over the strain gauge and crosshead motion for testing structural steel in tension. Furthermore, estimation of measurement uncertainty is presented for the basic material parameters extracted through strain measurement.}, subject = {Baustahl}, language = {en} } @inproceedings{MarzbanAlmasiSchwarz, author = {Marzban, Samira and Almasi, Ashkan and Schwarz, Jochen}, title = {REINFORCED CONCRETE STRUCTURAL WALL DATABASE DEVELOPMENT FOR MODEL VALIDATION}, doi = {10.25643/bauhaus-universitaet.2452}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150831-24523}, abstract = {Reinforced concrete walls are commonly selected as the lateral resisting systems in seismic design of buildings. The design procedure requires reliable/robust models to predict the wall response. Many researchers, thus, have focused on using the available experimental data to be able to comment on the quality of models at hand. What is missing though is an uncertain attitude towards the experimental data since such data can be affected by different sources of uncertainty. In this paper, we introduce the database created for model quality evaluation purposes considering the uncertainties in the experimental data. This is the first step of a larger study on experience-based model quality evaluation of reinforced concrete walls. Here, we briefly present the database as well as six sample validations of the developed numerical model (the quality of which is to be assessed). The database contains the information on nearly 300 wall specimens from about 50 sources. Both the database and the numerical model, built for uncertainty/sensitivity analysis purposes, are mainly based on ten parameters. These include geometry, material, reinforcement layout and loading properties. The validation results prove that the model is able to predict the wall response satisfactorily. Consequently, the validated numerical model could be used in further quality evaluation studies.}, subject = {Baustoff}, language = {en} } @phdthesis{Froebel, author = {Fr{\"o}bel, Toni}, title = {Data coupled civil engineering applications: Modeling and quality assessment methods}, publisher = {Verlag der Bauhaus-Universit{\"a}t Weimar 2013}, address = {Weimar}, isbn = {978-3-86068-486-3}, doi = {10.25643/bauhaus-universitaet.1836}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130128-18366}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {153}, abstract = {The planning process in civil engineering is highly complex and not manageable in its entirety. The state of the art decomposes complex tasks into smaller, manageable sub-tasks. Due to the close interrelatedness of the sub-tasks, it is essential to couple them. However, from a software engineering point of view, this is quite challenging to do because of the numerous incompatible software applications on the market. This study is concerned with two main objectives: The first is the generic formulation of coupling strategies in order to support engineers in the implementation and selection of adequate coupling strategies. This has been achieved by the use of a coupling pattern language combined with a four-layered, metamodel architecture, whose applicability has been performed on a real coupling scenario. The second one is the quality assessment of coupled software. This has been developed based on the evaluated schema mapping. This approach has been described using mathematical expressions derived from the set theory and graph theory by taking the various mapping patterns into account. Moreover, the coupling quality has been evaluated within the formalization process by considering the uncertainties that arise during mapping and has resulted in global quality values, which can be used by the user to assess the exchange. Finally, the applicability of the proposed approach has been shown using an engineering case study.}, subject = {Data exchange, Schema mapping, Quality assessment, Uncertainty, Coupling, BIM, Design patterns, Metamodel architecture}, language = {en} } @inproceedings{Scheiber, author = {Scheiber, Frank}, title = {ROBUSTNESS IN CIVIL ENGINEERING - INFLUENCES OF THE STRUCTURAL MODEL ON THE EVALUATION OF THE STRUCTURAL ROBUSTNESS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2784}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27845}, pages = {13}, abstract = {The topic of structural robustness is covered extensively in current literature in structural engineering. A few evaluation methods already exist. Since these methods are based on different evaluation approaches, the comparison is difficult. But all the approaches have one in common, they need a structural model which represents the structure to be evaluated. As the structural model is the basis of the robustness evaluation, there is the question if the quality of the chosen structural model is influencing the estimation of the structural robustness index. This paper shows what robustness in structural engineering means and gives an overview of existing assessment methods. One is the reliability based robustness index, which uses the reliability indices of a intact and a damaged structure. The second one is the risk based robustness index, which estimates the structural robustness by the usage of direct and indirect risk. The paper describes how these approaches for the evaluation of structural robustness works and which parameters will be used. Since both approaches needs a structural model for the estimation of the structural behavior and the probability of failure, it is necessary to think about the quality of the chosen structural model. Nevertheless, the chosen model has to represent the structure, the input factors and reflect the damages which occur. On the example of two different model qualities, it will be shown, that the model choice is really influencing the quality of the robustness index.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{NechytailoHorokhovKushchenko, author = {Nechytailo, Oleksandr and Horokhov, Yevgen and Kushchenko, Vladimir}, title = {ANALYSIS OF THE MODE OF DEFORMATION OF THE SUB-PULLEY STRUCTURES ON SHAFT SLOPING HEADGEAR STRUCTURES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2782}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27826}, pages = {16}, abstract = {A numerical analysis of the mode of deformation of the main load-bearing components of a typical frame sloping shaft headgear was performed. The analysis was done by a design model consisting of plane and solid finite elements, which were modeled in the program «LIRA». Due to the numerical results, the regularities of local stress distribution under a guide pulley bearing were revealed and parameters of a plane stress under both emergency and normal working loads were determined. In the numerical simulation, the guidelines to improve the construction of the joints of guide pulleys resting on sub-pulley frame-type structures were established. Overall, the results obtained are the basis for improving the engineering procedures of designing steel structures of shaft sloping headgear.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{LahmerGhorashi, author = {Lahmer, Tom and Ghorashi, Seyed Shahram}, title = {XFEM-BASED CRACK IDENTIFICATION APPLYING REGULARIZING METHODS IN A MULTILEVEL APPROACH}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2771}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27717}, pages = {9}, abstract = {Many structures in different engineering applications suffer from cracking. In order to make reliable prognosis about the serviceability of those structures it is of utmost importance to identify cracks as precisely as possible by non-destructive testing. A novel approach (XIGA), which combines the Isogeometric Analysis (IGA) and the Extended Finite Element Method (XFEM) is used for the forward problem, namely the analysis of a cracked material, see [1]. Applying the NURBS (Non-Uniform Rational B-Spline) based approach from IGA together with the XFEM allows to describe effectively arbitrarily shaped cracks and avoids the necessity of remeshing during the crack identification problem. We want to exploit these advantages for the inverse problem of detecting existing cracks by non-destructive testing, see e.g. [2]. The quality of the reconstructed cracks however depends on two major issues, namely the quality of the measured data (measurement error) and the discretization of the crack model. The first one will be taken into account by applying regularizing methods with a posteriori stopping criteria. The second one is critical in the sense that too few degrees of freedom, i.e. the number of control points of the NURBS, do not allow for a precise description of the crack. An increased number of control points, however, increases the number of unknowns in the inverse analysis and intensifies the ill-posedness. The trade-off between accuracy and stability is aimed to be found by applying an inverse multilevel algorithm [3, 4] where the identification is started with short knot vectors which successively will be enlarged during the identification process.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Keitel, author = {Keitel, Holger}, title = {QUANTIFYING THE QUALITY OF PARTIAL MODEL COUPLING AND ITS EFFECT ON THE SIMULATED STRUCTURAL BEHAVIOR}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2768}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27689}, pages = {11}, abstract = {The process of analysis and design in structural engineering requires the consideration of different partial models, for example loading, structural materials, structural elements, and analysis types. The various partial models are combined by coupling several of their components. Due to the large number of available partial models describing similar phenomena, many different model combinations are possible to simulate the same aspects of a structure. The challenging task of an engineer is to select a model combination that ensures a sufficient, reliable prognosis. In order to achieve this reliable prognosis of the overall structural behavior, a high individual quality of the partial models and an adequate coupling of the partial models is required. Several methodologies have been proposed to evaluate the quality of partial models for their intended application, but a detailed study of the coupling quality is still lacking. This paper proposes a new approach to assess the coupling quality of partial models in a quantitative manner. The approach is based on the consistency of the coupled data and applies for uni- and bidirectional coupled partial models. Furthermore, the influence of the coupling quality on the output quantities of the partial models is considered. The functionality of the algorithm and the effect of the coupling quality are demonstrated using an example of coupled partial models in structural engineering.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{KulchytskyyHorokhovGubanovetal., author = {Kulchytskyy, Artem and Horokhov, Yevgen and Gubanov, Vadim and Golikov, Alexandr}, title = {THE INFLUENCE OF THE LOCAL CONCAVITY ON THE FUNCTIONING OF BEARING SHELL OF HIGH-RISE CONSTRUCTION}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2770}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27701}, pages = {10}, abstract = {Areas with various defects and damages, which reduce carrying capacity, were examined in a study of metal chimneys. In this work, the influence of the local dimples on the function of metal chimneys was considered. Modeling tasks were completed in the software packages LIRA and ANSYS. Parameters were identified, which characterize the local dimples, and a numerical study of the influence of local dimples on the stress-strain state of shells of metal chimneys was conducted. A distribution field of circular and meridional tension was analyzed in a researched area. Zones of influence of dimples on the bearing cover of metal chimneys were investigated. The bearing capacities of high-rise structures with various dimple geometries and various cover parameters were determined with respect to specified areas of the trunk. Dependent relationships are represented graphically for the decrease in bearing capacity of a cover with respect to dimples. Diameter and thickness of covers of metal chimneys were constructed according to the resulting data.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{Wudtke, author = {Wudtke, Idna}, title = {CONSTITUTIVE MODELING OF CRYSTALLINE MATERIALS WITH TEXTURE CHARACTERISTICS}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2791}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27910}, pages = {9}, abstract = {The analysis of the response of complex structural systems requires the description of the material constitutive relations by means of an appropriate material model. The level of abstraction of such model may strongly affect the quality of the prognosis of the whole structure. In context to this fact, it is necessary to describe the material in a convenient sense as exact but as simple as possible. All material phenomena of crystalline materials e.g. steel, affecting the behavior of the structure, rely on physical effects which are interacting over spatial scales from subatomic to macroscopic range. Nevertheless, if the material is microscopically heterogenic, it might be appropriate to use phenomenological models for the purpose of civil engineering. Although constantly applied, these models are insufficient for steel materials with microscopic characteristics such as texture, typically occurring in hot rolled steel members or heat affected zones of welded joints. Hence, texture is manifested in crystalline materials as a regular crystallographic structure and crystallite orientation, influencing macroscopic material properties. The analysis of structural response of material with texture (e.g. rolled steel or heat affected zone of a welded joint) obliges the extension of the phenomenological material description of macroscopic scale by means of microscopic information. This paper introduces an enrichment approach for material models based on a hierarchical multiscale methodology. This has been done by describing the grain texture on a mesoscopic scale and coupling it with macroscopic constitutive relations by means of homogenization. Due to a variety of available homogenization methods, the question of an assessment of coupling quality arises. The applicability of the method and the effect of the coupling method on the reliability of the response are presented on an example.}, subject = {Angewandte Informatik}, language = {en} } @phdthesis{Karaki, author = {Karaki, Ghada}, title = {Assessment of coupled models of bridges considering time-dependent vehicular loading}, doi = {10.25643/bauhaus-universitaet.1589}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120402-15894}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {184}, abstract = {Bridge vibration due to traffic loading has been a subject of extensive research in the last decades. The focus of such research has been to develop solution algorithms and investigate responses or behaviors of interest. However, proving the quality and reliability of the model output in structural engineering has become a topic of increasing importance. Therefore, this study is an attempt to extend concepts of uncertainty and sensitivity analyses to assess the dynamic response of a coupled model in bridge engineering considering time-dependent vehicular loading. A setting for the sensitivity analysis is proposed, which enables performing the sensitivity analysis considering random stochastic processes. The classical and proposed sensitivity settings are used to identify the relevant input parameters and models that have the most influence on the variance of the dynamic response. The sensitivity analysis exercises the model itself and extracts results without the need for measurements or reference solutions; however, it does not offer a means of ranking the coupled models studied. Therefore, concepts of total uncertainty are employed to rank the coupled models studied according to their fitness in describing the dynamic problem. The proposed procedures are applied in two examples to assess the output of coupled subsystems and coupled partial models in bridge engineering considering the passage of a heavy vehicle at various speeds.}, subject = {Ingenieurbau}, language = {en} } @phdthesis{Nikulla, author = {Nikulla, Susanne}, title = {Quality assessment of kinematical models by means of global and goal-oriented error estimation techniques}, publisher = {Verlag der Bauhaus-Universit{\"a}t Weimar}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.1616}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120419-16161}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {117}, abstract = {Methods for model quality assessment are aiming to find the most appropriate model with respect to accuracy and computational effort for a structural system under investigation. Model error estimation techniques can be applied for this purpose when kinematical models are investigated. They are counted among the class of white box models, which means that the model hierarchy and therewith the best model is known. This thesis gives an overview of discretisation error estimators. Deduced from these, methods for model error estimation are presented. Their general goal is to make a prediction of the inaccuracies that are introduced using the simpler model without knowing the solution of a more complex model. This information can be used to steer an adaptive process. Techniques for linear and non-linear problems as well as global and goal-oriented errors are introduced. The estimation of the error in local quantities is realised by solving a dual problem, which serves as a weight for the primal error. So far, such techniques have mainly been applied in material modelling and for dimensional adaptivity. Within the scope of this thesis, available model error estimators are adapted for an application to kinematical models. Their applicability is tested regarding the question of whether a geometrical non-linear calculation is necessary or not. The analysis is limited to non-linear estimators due to the structure of the underlying differential equations. These methods often involve simplification, e.g linearisations. It is investigated to which extent such assumptions lead to meaningful results, when applied to kinematical models.}, subject = {Model quality, Model error estimation, Kinematical model, Geometric non-linearity, Finite Element method}, language = {en} } @inproceedings{AbbasMorgenthal, author = {Abbas, Tajammal and Morgenthal, Guido}, title = {Model combinations for assessing the flutter stability of suspension bridges}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2757}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27574}, pages = {11}, abstract = {Long-span cable supported bridges are prone to aerodynamic instabilities caused by wind and this phenomenon is usually a major design criterion. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary therefore requires accurate and robust models. This paper aims at studying various combinations of models to predict the flutter phenomenon. Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the hybrid model. Models for aerodynamic forces employed are the analytical Theodorsen expressions for the motion-enduced aerodynamic forces of a flat plate and Scanlan derivatives as a Meta model. Further, Computational Fluid Dynamics (CFD) simulations using the Vortex Particle Method (VPM) were used to cover numerical models. The structural representations were dimensionally reduced to two degree of freedom section models calibrated from global models as well as a fully three-dimensional Finite Element (FE) model. A two degree of freedom system was analysed analytically as well as numerically. Generally, all models were able to predict the flutter phenomenon and relatively close agreement was found for the particular bridge. In conclusion, the model choice for a given practical analysis scenario will be discussed in the context of the analysis findings.}, subject = {Angewandte Mathematik}, language = {en} }