@misc{Rahn2007, type = {Master Thesis}, author = {Rahn, Andre}, title = {"Monitoring an Br{\"u}ckenkappen mit Tellerankern"}, doi = {10.25643/bauhaus-universitaet.1274}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20080307-13431}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2007}, abstract = {Br{\"u}ckenkappen gew{\"a}hrleisten die Trennung der Verkehrsr{\"a}ume Fahrbahn und Gehweg und m{\"u}ssen aufgrund ihrer Anordnung im Querschnitt Schutz- und Leiteinrichtungen aufnehmen. Zur Verankerung der Br{\"u}ckenkappen am {\"U}berbau werden je nach Erfordernissen Anschlussbewehrung und / oder Telleranker angeordnet. Die vorliegende Arbeit analysiert grundlegende M{\"o}glichkeiten zur messtechnischen Untersuchung von Br{\"u}ckenkappen bei Anwendung von Tellerankern. Dabei werden die theoretische und konstruktiven Grundlagen der Kappenausbildung betrachtet. Außerdem werden die Zusammenh{\"a}nge zwischen den auftretenden Einwirkungen und deren Auswirkungen auf Br{\"u}ckenkappen betrachtet. Darauf aufbauend werden Kennwerte zur Ermittlung der Beanspruchung in den Kappen und den Tellerankern abgeleitet und hinsichtlich der messtechnischen Erfassung und Auswertung der Messdaten analysiert.}, subject = {Br{\"u}cke}, language = {de} } @phdthesis{Karaki, author = {Karaki, Ghada}, title = {Assessment of coupled models of bridges considering time-dependent vehicular loading}, doi = {10.25643/bauhaus-universitaet.1589}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20120402-15894}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {184}, abstract = {Bridge vibration due to traffic loading has been a subject of extensive research in the last decades. The focus of such research has been to develop solution algorithms and investigate responses or behaviors of interest. However, proving the quality and reliability of the model output in structural engineering has become a topic of increasing importance. Therefore, this study is an attempt to extend concepts of uncertainty and sensitivity analyses to assess the dynamic response of a coupled model in bridge engineering considering time-dependent vehicular loading. A setting for the sensitivity analysis is proposed, which enables performing the sensitivity analysis considering random stochastic processes. The classical and proposed sensitivity settings are used to identify the relevant input parameters and models that have the most influence on the variance of the dynamic response. The sensitivity analysis exercises the model itself and extracts results without the need for measurements or reference solutions; however, it does not offer a means of ranking the coupled models studied. Therefore, concepts of total uncertainty are employed to rank the coupled models studied according to their fitness in describing the dynamic problem. The proposed procedures are applied in two examples to assess the output of coupled subsystems and coupled partial models in bridge engineering considering the passage of a heavy vehicle at various speeds.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{VilceanuAbrahamczykMorgenthal, author = {V{\^i}lceanu, Victor and Abrahamczyk, Lars and Morgenthal, Guido}, title = {Nonlinear Analysis of Structures: Wind Induced Vibrations}, doi = {10.25643/bauhaus-universitaet.4033}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20191122-40337}, pages = {183}, abstract = {The proceedings at hand are the result of the International Master Course Module: "Nonlinear Analysis of Structures: Wind Induced Vibrations" held at the Faculty of Civil Engineering at Bauhaus-University Weimar, Germany in the summer semester 2019 (April - August). This material summarizes the results of the project work done throughout the semester, provides an overview of the topic, as well as impressions from the accompanying programme. Wind Engineering is a particular field of Civil Engineering that evaluates the resistance of structures caused by wind loads. Bridges, high-rise buildings, chimneys and telecommunication towers might be susceptible to wind vibrations due to their increased flexibility, therefore a special design is carried for this aspect. Advancement in technology and scientific studies permit us doing research at small scale for more accurate analyses. Therefore scaled models of real structures are built and tested for various construction scenarios. These models are placed in wind tunnels where experiments are conducted to determine parameters such as: critical wind speeds for bridge decks, static wind coefficients and forces for buildings or bridges. The objective of the course was to offer insight to the students into the assessment of long-span cable-supported bridges and high-rise buildings under wind excitation. The participating students worked in interdisciplinary teams to increase their knowledge in the understanding and influences on the behaviour of wind-sensitive structures.}, subject = {Ingenieurbau}, language = {en} } @inproceedings{AbrahamczykSchwarz, author = {Abrahamczyk, Lars and Schwarz, Jochen}, title = {Forecast Engineering: From Past Design to Future Decision 2017}, doi = {10.25643/bauhaus-universitaet.4034}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20191122-40344}, pages = {221}, abstract = {The design of engineering structures takes place today and in the past on the basis of static calculations. The consideration of uncertainties in the model quality becomes more and more important with the development of new construction methods and design requirements. In addition to the traditional forced-based approaches, experiences and observations about the deformation behavior of components and the overall structure under different exposure conditions allow the introduction of novel detection and evaluation criteria. The proceedings at hand are the result from the Bauhaus Summer School Course: Forecast Engineering held at the Bauhaus-Universit{\"a}t Weimar, 2017. It summarizes the results of the conducted project work, provides the abstracts of the contributions by the participants, as well as impressions from the accompanying programme and organized cultural activities. The special character of this course is in the combination of basic disciplines of structural engineering with applied research projects in the areas of steel and reinforced concrete structures, earthquake and wind engineering as well as informatics and linking them to mathematical methods and modern tools of visualization. Its innovative character results from the ambitious engineering tasks and advanced modeling demands.}, subject = {Proceedings}, language = {en} } @inproceedings{AbrahamczykSchwarz, author = {Abrahamczyk, Lars and Schwarz, Jochen}, title = {Forecast Engineering: From Past Design to Future Decision 2018}, doi = {10.25643/bauhaus-universitaet.4036}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20191126-40364}, pages = {112}, abstract = {Institute of Structural Engineering, Institute of Structural Mechanics, as well as Institute for Computing, Mathematics and Physics in Civil Engineering at the faculty of civil engineering at the Bauhaus-Universit{\"a}t Weimar presented special topics of structural engineering to highlight the broad spectrum of civil engineering in the field of modeling and simulation. The summer course sought to impart knowledge and to combine research with a practical context, through a challenging and demanding series of lectures, seminars and project work. Participating students were enabled to deal with advanced methods and its practical application. The extraordinary format of the interdisciplinary summer school offers the opportunity to study advanced developments of numerical methods and sophisticated modelling techniques in different disciplines of civil engineering for foreign and domestic students, which go far beyond traditional graduate courses. The proceedings at hand are the result from the Bauhaus Summer School course: Forecast Engineering held at the Bauhaus-Universit{\"a}t Weimar, 2018. It summarizes the results of the conducted project work, provides the abstracts/papers of the contributions by the participants, as well as impressions from the accompanying programme and organized cultural activities.}, subject = {Proceedings}, language = {en} }