@phdthesis{Will1999, author = {Will, Johannes}, title = {Beitrag zur Standsicherheitsberechnung im gekl{\"u}fteten Fels in der Kontinuums- und Diskontinuumsmechanik unter Verwendung impliziter und expliziter Berechnungsstrategien}, doi = {10.25643/bauhaus-universitaet.58}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040310-613}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {1999}, subject = {Staumauer}, language = {de} } @phdthesis{Haefner2006, author = {H{\"a}fner, Stefan}, title = {Grid-based procedures for the mechanical analysis of heterogeneous solids}, doi = {10.25643/bauhaus-universitaet.858}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20070830-9185}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2006}, abstract = {The importance of modern simulation methods in the mechanical analysis of heterogeneous solids is presented in detail. Thereby the problem is noted that even for small bodies the required high-resolution analysis reaches the limits of today's computational power, in terms of memory demand as well as acceptable computational effort. A further problem is that frequently the accuracy of geometrical modelling of heterogeneous bodies is inadequate. The present work introduces a systematic combination and adaption of grid-based methods for achieving an essentially higher resolution in the numerical analysis of heterogeneous solids. Grid-based methods are as well primely suited for developing efficient and numerically stable algorithms for flexible geometrical modeling. A key aspect is the uniform data management for a grid, which can be utilized to reduce the effort and complexity of almost all concerned methods. A new finite element program, called Mulgrido, was just developed to realize this concept consistently and to test the proposed methods. Several disadvantages which generally result from grid discretizations are selectively corrected by modified methods. The present work is structured into a geometrical model, a mechanical model and a numerical model. The geometrical model includes digital image-based modeling and in particular several methods for the theory-based generation of inclusion-matrix models. Essential contributions refer to variable shape, size distribution, separation checks and placement procedures of inclusions. The mechanical model prepares the fundamentals of continuum mechanics, homogenization and damage modeling for the following numerical methods. The first topic of the numerical model introduces to a special version of B-spline finite elements. These finite elements are entirely variable in the order k of B-splines. For homogeneous bodies this means that the approximation quality can arbitrarily be scaled. In addition, the multiphase finite element concept in combination with transition zones along material interfaces yields a valuable solution for heterogeneous bodies. As the formulation is element-based, the storage of a global stiffness matrix is superseded such that the memory demand can essentially be reduced. This is possible in combination with iterative solver methods which represent the second topic of the numerical model. Here, the focus lies on multigrid methods where the number of required operations to solve a linear equation system only increases linearly with problem size. Moreover, for badly conditioned problems quite an essential improvement is achieved by preconditioning. The third part of the numerical model discusses certain aspects of damage simulation which are closely related to the proposed grid discretization. The strong efficiency of the linear analysis can be maintained for damage simulation. This is achieved by a damage-controlled sequentially linear iteration scheme. Finally a study on the effective material behavior of heterogeneous bodies is presented. Especially the influence of inclusion shapes is examined. By means of altogether more than one hundred thousand random geometrical arrangements, the effective material behavior is statistically analyzed and assessed.}, subject = {B-Spline}, language = {en} } @phdthesis{Higuchi2007, author = {Higuchi, Shoko}, title = {Cost-Benefit Based Maintenance Optimization for Deteriorating Structures}, doi = {10.25643/bauhaus-universitaet.1288}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20080513-13616}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2007}, abstract = {In recent years increasingly consideration has been given to the lifetime extension of existing structures. This is based on the fact that a growing percentage of civil infrastructure as well as buildings is threatened by obsolescence and that due to simple monetary reasons this can no longer be countered by simply re-building everything anew. Hence maintenance interventions are required which allow partial or complete structural rehabilitation. However, maintenance interventions have to be economically reasonable, that is, maintenance expenditures have to be outweighed by expected future benefits. Is this not the case, then indeed the structure is obsolete - at least in its current functional, economic, technical, or social configuration - and innovative alternatives have to be evaluated. An optimization formulation for planning maintenance interventions based on cost-benefit criteria is proposed herein. The underlying formulation is as follows: (a) between maintenance interventions structural deterioration is described as a random process; (b) maintenance interventions can take place anytime throughout lifetime and comprise the rehabilitation of all deterioration states above a certain minimum level; and (c) maintenance interventions are optimized by taking into account all expected life-cycle costs (construction, failure, inspection and state-dependent repair costs) as well as state- or time-dependent benefit rates. The optimization is performed by an evolutionary algorithm. The proposed approach also allows to determine optimal lifetimes and acceptable failure rates. Numerical examples demonstrate the importance of defining benefit rates explicitly. It is shown, that the optimal solution to maintenance interventions requires to take action before reaching the acceptable failure rate or the zero expected net benefit rate level. Deferring decisions with respect to maintenance not only results, in general, in higher losses, but also results in overly hazardous structures.}, subject = {Kosten-Nutzen-Analyse}, language = {en} } @phdthesis{Eckardt2009, author = {Eckardt, Stefan}, title = {Adaptive heterogeneous multiscale models for the nonlinear simulation of concrete}, doi = {10.25643/bauhaus-universitaet.1416}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20100317-15023}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2009}, abstract = {The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented.}, subject = {Beton}, language = {en} } @phdthesis{Unger2009, author = {Unger, J{\"o}rg F.}, title = {Neural networks in a multiscale approach for concrete}, doi = {10.25643/bauhaus-universitaet.1392}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20090626-14763}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2009}, abstract = {From a macroscopic point of view, failure within concrete structures is characterized by the initiation and propagation of cracks. In the first part of the thesis, a methodology for macroscopic crack growth simulations for concrete structures using a cohesive discrete crack approach based on the extended finite element method is introduced. Particular attention is turned to the investigation of criteria for crack initiation and crack growth. A drawback of the macroscopic simulation is that the real physical phenomena leading to the nonlinear behavior are only modeled phenomenologically. For concrete, the nonlinear behavior is characterized by the initiation of microcracks which coalesce into macroscopic cracks. In order to obtain a higher resolution of this failure zones, a mesoscale model for concrete is developed that models particles, mortar matrix and the interfacial transition zone (ITZ) explicitly. The essential features are a representation of particles using a prescribed grading curve, a material formulation based on a cohesive approach for the ITZ and a combined model with damage and plasticity for the mortar matrix. Compared to numerical simulations, the response of real structures exhibits a stochastic scatter. This is e.g. due to the intrinsic heterogeneities of the structure. For mesoscale models, these intrinsic heterogeneities are simulated by using a random distribution of particles and by a simulation of spatially variable material parameters using random fields. There are two major problems related to numerical simulations on the mesoscale. First of all, the material parameters for the constitutive description of the materials are often difficult to measure directly. In order to estimate material parameters from macroscopic experiments, a parameter identification procedure based on Bayesian neural networks is developed which is universally applicable to any parameter identification problem in numerical simulations based on experimental results. This approach offers information about the most probable set of material parameters based on experimental data and information about the accuracy of the estimate. Consequently, this approach can be used a priori to determine a set of experiments to be carried out in order to fit the parameters of a numerical model to experimental data. The second problem is the computational effort required for mesoscale simulations of a full macroscopic structure. For this purpose, a coupling between mesoscale and macroscale model is developed. Representative mesoscale simulations are used to train a metamodel that is finally used as a constitutive model in a macroscopic simulation. Special focus is placed on the ability of appropriately simulating unloading.}, subject = {Beton}, language = {en} } @phdthesis{Luther2010, author = {Luther, Torsten}, title = {Adaptation of atomistic and continuum methods for multiscale simulation of quasi-brittle intergranular damage}, doi = {10.25643/bauhaus-universitaet.1436}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20101101-15245}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2010}, abstract = {The numerical simulation of damage using phenomenological models on the macroscale was state of the art for many decades. However, such models are not able to capture the complex nature of damage, which simultaneously proceeds on multiple length scales. Furthermore, these phenomenological models usually contain damage parameters, which are physically not interpretable. Consequently, a reasonable experimental determination of these parameters is often impossible. In the last twenty years, the ongoing advance in computational capacities provided new opportunities for more and more detailed studies of the microstructural damage behavior. Today, multiphase models with several million degrees of freedom enable for the numerical simulation of micro-damage phenomena in naturally heterogeneous materials. Therewith, the application of multiscale concepts for the numerical investigation of the complex nature of damage can be realized. The presented thesis contributes to a hierarchical multiscale strategy for the simulation of brittle intergranular damage in polycrystalline materials, for example aluminum. The numerical investigation of physical damage phenomena on an atomistic microscale and the integration of these physically based information into damage models on the continuum meso- and macroscale is intended. Therefore, numerical methods for the damage analysis on the micro- and mesoscale including the scale transfer are presented and the transition to the macroscale is discussed. The investigation of brittle intergranular damage on the microscale is realized by the application of the nonlocal Quasicontinuum method, which fully describes the material behavior by atomistic potential functions, but reduces the number of atomic degrees of freedom by introducing kinematic couplings. Since this promising method is applied only by a limited group of researchers for special problems, necessary improvements have been realized in an own parallelized implementation of the 3D nonlocal Quasicontinuum method. The aim of this implementation was to develop and combine robust and efficient algorithms for a general use of the Quasicontinuum method, and therewith to allow for the atomistic damage analysis in arbitrary grain boundary configurations. The implementation is applied in analyses of brittle intergranular damage in ideal and nonideal grain boundary models of FCC aluminum, considering arbitrary misorientations. From the microscale simulations traction separation laws are derived, which describe grain boundary decohesion on the mesoscale. Traction separation laws are part of cohesive zone models to simulate the brittle interface decohesion in heterogeneous polycrystal structures. 2D and 3D mesoscale models are presented, which are able to reproduce crack initiation and propagation along cohesive interfaces in polycrystals. An improved Voronoi algorithm is developed in 2D to generate polycrystal material structures based on arbitrary distribution functions of grain size. The new model is more flexible in representing realistic grain size distributions. Further improvements of the 2D model are realized by the implementation and application of an orthotropic material model with Hill plasticity criterion to grains. The 2D and 3D polycrystal models are applied to analyze crack initiation and propagation in statically loaded samples of aluminum on the mesoscale without the necessity of initial damage definition.}, subject = {Mechanik}, language = {en} } @phdthesis{Brehm2011, author = {Brehm, Maik}, title = {Vibration-based model updating: Reduction and quantification of uncertainties}, doi = {10.25643/bauhaus-universitaet.1465}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20110926-15553}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2011}, abstract = {Numerical models and their combination with advanced solution strategies are standard tools for many engineering disciplines to design or redesign structures and to optimize designs with the purpose to improve specific requirements. As the successful application of numerical models depends on their suitability to represent the behavior related to the intended use, they should be validated by experimentally obtained results. If the discrepancy between numerically derived and experimentally obtained results is not acceptable, a model revision or a revision of the experiment need to be considered. Model revision is divided into two classes, the model updating and the basic revision of the numerical model. The presented thesis is related to a special branch of model updating, the vibration-based model updating. Vibration-based model updating is a tool to improve the correlation of the numerical model by adjusting uncertain model input parameters by means of results extracted from vibration tests. Evidently, uncertainties related to the experiment, the numerical model, or the applied numerical solving strategies can influence the correctness of the identified model input parameters. The reduction of uncertainties for two critical problems and the quantification of uncertainties related to the investigation of several nominally identical structures are the main emphases of this thesis. First, the reduction of uncertainties by optimizing reference sensor positions is considered. The presented approach relies on predicted power spectral amplitudes and an initial finite element model as a basis to define the assessment criterion for predefined sensor positions. In combination with geometry-based design variables, which represent the sensor positions, genetic and particle swarm optimization algorithms are applied. The applicability of the proposed approach is demonstrated on a numerical benchmark study of a simply supported beam and a case study of a real test specimen. Furthermore, the theory of determining the predicted power spectral amplitudes is validated with results from vibration tests. Second, the possibility to reduce uncertainties related to an inappropriate assignment for numerically derived and experimentally obtained modes is investigated. In the context of vibration-based model updating, the correct pairing is essential. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. Hence, an alternative criterion, the energy-based modal assurance criterion, is proposed. This criterion combines the mathematical characteristic of orthogonality with the physical properties of the structure by modal strain energies. A numerical example and a case study with experimental data are presented to show the advantages of the proposed energy-based modal assurance criterion in comparison to the traditional modal assurance criterion. Third, the application of optimization strategies combined with information theory based objective functions is analyzed for the purpose of stochastic model updating. This approach serves as an alternative to the common sensitivity-based stochastic model updating strategies. Their success depends strongly on the defined initial model input parameters. In contrast, approaches based on optimization strategies can be more flexible. It can be demonstrated, that the investigated nature inspired optimization strategies in combination with Bhattacharyya distance and Kullback-Leibler divergence are appropriate. The obtained accuracies and the respective computational effort are comparable with sensitivity-based stochastic model updating strategies. The application of model updating procedures to improve the quality and suitability of a numerical model is always related to additional costs. The presented innovative approaches will contribute to reduce and quantify uncertainties within a vibration-based model updating process. Therefore, the increased benefit can compensate the additional effort, which is necessary to apply model updating procedures.}, subject = {Dynamik}, language = {en} } @phdthesis{Schrader, author = {Schrader, Kai}, title = {Hybrid 3D simulation methods for the damage analysis of multiphase composites}, doi = {10.25643/bauhaus-universitaet.2059}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20131021-20595}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {174}, abstract = {Modern digital material approaches for the visualization and simulation of heterogeneous materials allow to investigate the behavior of complex multiphase materials with their physical nonlinear material response at various scales. However, these computational techniques require extensive hardware resources with respect to computing power and main memory to solve numerically large-scale discretized models in 3D. Due to a very high number of degrees of freedom, which may rapidly be increased to the two-digit million range, the limited hardware ressources are to be utilized in a most efficient way to enable an execution of the numerical algorithms in minimal computation time. Hence, in the field of computational mechanics, various methods and algorithms can lead to an optimized runtime behavior of nonlinear simulation models, where several approaches are proposed and investigated in this thesis. Today, the numerical simulation of damage effects in heterogeneous materials is performed by the adaption of multiscale methods. A consistent modeling in the three-dimensional space with an appropriate discretization resolution on each scale (based on a hierarchical or concurrent multiscale model), however, still contains computational challenges in respect to the convergence behavior, the scale transition or the solver performance of the weak coupled problems. The computational efficiency and the distribution among available hardware resources (often based on a parallel hardware architecture) can significantly be improved. In the past years, high-performance computing (HPC) and graphics processing unit (GPU) based computation techniques were established for the investigationof scientific objectives. Their application results in the modification of existing and the development of new computational methods for the numerical implementation, which enables to take advantage of massively clustered computer hardware resources. In the field of numerical simulation in material science, e.g. within the investigation of damage effects in multiphase composites, the suitability of such models is often restricted by the number of degrees of freedom (d.o.f.s) in the three-dimensional spatial discretization. This proves to be difficult for the type of implementation method used for the nonlinear simulation procedure and, simultaneously has a great influence on memory demand and computational time. In this thesis, a hybrid discretization technique has been developed for the three-dimensional discretization of a three-phase material, which is respecting the numerical efficiency of nonlinear (damage) simulations of these materials. The increase of the computational efficiency is enabled by the improved scalability of the numerical algorithms. Consequently, substructuring methods for partitioning the hybrid mesh were implemented, tested and adapted to the HPC computing framework using several hundred CPU (central processing units) nodes for building the finite element assembly. A memory-efficient iterative and parallelized equation solver combined with a special preconditioning technique for solving the underlying equation system was modified and adapted to enable combined CPU and GPU based computations. Hence, it is recommended by the author to apply the substructuring method for hybrid meshes, which respects different material phases and their mechanical behavior and which enables to split the structure in elastic and inelastic parts. However, the consideration of the nonlinear material behavior, specified for the corresponding phase, is limited to the inelastic domains only, and by that causes a decreased computing time for the nonlinear procedure. Due to the high numerical effort for such simulations, an alternative approach for the nonlinear finite element analysis, based on the sequential linear analysis, was implemented in respect to scalable HPC. The incremental-iterative procedure in finite element analysis (FEA) during the nonlinear step was then replaced by a sequence of linear FE analysis when damage in critical regions occured, known in literature as saw-tooth approach. As a result, qualitative (smeared) crack initiation in 3D multiphase specimens has efficiently been simulated.}, subject = {high-performance computing}, language = {en} } @phdthesis{Ahmad, author = {Ahmad, Sofyan}, title = {Reference Surface-Based System Identification}, doi = {10.25643/bauhaus-universitaet.2113}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20140205-21132}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {153}, abstract = {Environmental and operational variables and their impact on structural responses have been acknowledged as one of the most important challenges for the application of the ambient vibration-based damage identification in structures. The damage detection procedures may yield poor results, if the impacts of loading and environmental conditions of the structures are not considered. The reference-surface-based method, which is proposed in this thesis, is addressed to overcome this problem. In the proposed method, meta-models are used to take into account significant effects of the environmental and operational variables. The usage of the approximation models, allows the proposed method to simply handle multiple non-damaged variable effects simultaneously, which for other methods seems to be very complex. The input of the meta-model are the multiple non-damaged variables while the output is a damage indicator. The reference-surface-based method diminishes the effect of the non-damaged variables to the vibration based damage detection results. Hence, the structure condition that is assessed by using ambient vibration data at any time would be more reliable. Immediate reliable information regarding the structure condition is required to quickly respond to the event, by means to take necessary actions concerning the future use or further investigation of the structures, for instance shortly after extreme events such as earthquakes. The critical part of the proposed damage detection method is the learning phase, where the meta-models are trained by using input-output relation of observation data. Significant problems that may encounter during the learning phase are outlined and some remedies to overcome the problems are suggested. The proposed damage identification method is applied to numerical and experimental models. In addition to the natural frequencies, wavelet energy and stochastic subspace damage indicators are used.}, subject = {System Identification}, language = {en} } @phdthesis{Mai, author = {Mai, Luu}, title = {Structural Control Systems in High-speed Railway Bridges}, issn = {1610-7381}, doi = {10.25643/bauhaus-universitaet.2339}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20141223-23391}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {147}, abstract = {Structural vibration control of high-speed railway bridges using tuned mass dampers, semi-active tuned mass dampers, fluid viscous dampers and magnetorheological dampers to reduce resonant structural vibrations is studied. In this work, the addressed main issues include modeling of the dynamic interaction of the structures, optimization of the parameters of the dampers and comparison of their efficiency. A new approach to optimize multiple tuned mass damper systems on an uncertain model is proposed based on the H-infinity optimization criteria and the DK iteration procedure with norm-bounded uncertainties in frequency domain. The parameters of tuned mass dampers are optimized directly and simultaneously on different modes contributing significantly to the multi-resonant peaks to explore the different possible combinations of parameters. The effectiveness of the present method is also evaluated through comparison with a previous method. In the case of semi-active tuned mass dampers, an optimization algorithm is derived to control the magnetorheological damper in these semi-active damping systems. The use of the proposed algorithm can generate various combinations of control gains and state variables. This can lead to the improvement of the ability of MR dampers to track the desired control forces. An uncertain model to reduce detuning effects is also considered in this work. Next, for fluid viscous dampers, in order to tune the optimal parameters of fluid viscous dampers to the vicinity of the exact values, analytical formulae which can include structural damping are developed based on the perturbation method. The proposed formulae can also be considered as an improvement of the previous analytical formulae, especially for bridge beams with large structural damping. Finally, a new combination of magnetorheological dampers and a double-beam system to improve the performance of the primary structure vibration is proposed. An algorithm to control magnetorheological dampers in this system is developed by using standard linear matrix inequality techniques. Weight functions as a loop shaping procedure are also introduced in the feedback controllers to improve the tracking ability of magnetorheological damping forces. To this end, the effectiveness of magnetorheological dampers controlled by the proposed scheme, along with the effects of the uncertain and time-delay parameters on the models, are evaluated through numerical simulations. Additionally, a comparison of the dampers based on their performance is also considered in this work.}, subject = {High-speed railway bridge}, language = {en} } @phdthesis{Zhao, author = {Zhao, Jun-Hua}, title = {Multiscale modeling of nanodevices based on carbon nanotubes and polymers}, doi = {10.25643/bauhaus-universitaet.2107}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20140130-21078}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {175}, abstract = {This thesis concerns the physical and mechanical interactions on carbon nanotubes and polymers by multiscale modeling. CNTs have attracted considerable interests in view of their unique mechanical, electronic, thermal, optical and structural properties, which enable them to have many potential applications. Carbon nanotube exists in several structure forms, from individual single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) to carbon nanotube bundles and networks. The mechanical properties of SWCNTs and MWCNTs have been extensively studied by continuum modeling and molecular dynamics (MD) simulations in the past decade since the properties could be important in the CNT-based devices. CNT bundles and networks feature outstanding mechanical performance and hierarchical structures and network topologies, which have been taken as a potential saving-energy material. In the synthesis of nanocomposites, the formation of the CNT bundles and networks is a challenge to remain in understanding how to measure and predict the properties of such large systems. Therefore, a mesoscale method such as a coarse-grained (CG) method should be developed to study the nanomechanical characterization of CNT bundles and networks formation. In this thesis, the main contributions can be written as follows: (1) Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. (2) The CG potentials of SWCNTs are established by a molecular mechanics model. (3) The binding energy between two parallel and crossing SWCNTs and MWCNTs is obtained by continuum modeling of the van der Waals interaction between them. Crystalline and amorphous polymers are increasingly used in modern industry as tructural materials due to its important mechanical and physical properties. For crystalline polyethylene (PE), despite its importance and the studies of available MD simulations and continuum models, the link between molecular and continuum descriptions of its mechanical properties is still not well established. For amorphous polymers, the chain length and temperature effect on their elastic and elastic-plastic properties has been reported based on the united-atom (UA) and CG MD imulations in our previous work. However, the effect of the CL and temperature on the failure behavior is not understood well yet. Especially, the failure behavior under shear has been scarcely reported in previous work. Therefore, understanding the molecular origins of macroscopic fracture behavior such as fracture energy is a fundamental scientific challenge. In this thesis, the main contributions can be written as follows: (1) An analytical molecular mechanics model is developed to obtain the size-dependent elastic properties of crystalline PE. (2) We show that the two molecular mechanics models, the stick-spiral and the beam models, predict considerably different mechanical properties of materials based on energy equivalence. The difference between the two models is independent of the materials. (3) The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers are scrutinized using molecular dynamics simulations. Finally, the influence of polymer wrapped two neighbouring SWNTs' dispersion on their load transfer is investigated by molecular dynamics (MD) simulations, in which the SWNTs' position, the polymer chain length and the temperature on the interaction force is systematically studied.}, subject = {Mehrskalenmodell}, language = {en} } @phdthesis{Vu, author = {Vu, Bac Nam}, title = {Stochastic uncertainty quantification for multiscale modeling of polymeric nanocomposites}, doi = {10.25643/bauhaus-universitaet.2555}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160322-25551}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {265}, abstract = {Nanostructured materials are extensively applied in many fields of material science for new industrial applications, particularly in the automotive, aerospace industry due to their exceptional physical and mechanical properties. Experimental testing of nanomaterials is expensive, timeconsuming,challenging and sometimes unfeasible. Therefore,computational simulations have been employed as alternative method to predict macroscopic material properties. The behavior of polymeric nanocomposites (PNCs) are highly complex. The origins of macroscopic material properties reside in the properties and interactions taking place on finer scales. It is therefore essential to use multiscale modeling strategy to properly account for all large length and time scales associated with these material systems, which across many orders of magnitude. Numerous multiscale models of PNCs have been established, however, most of them connect only two scales. There are a few multiscale models for PNCs bridging four length scales (nano-, micro-, meso- and macro-scales). In addition, nanomaterials are stochastic in nature and the prediction of macroscopic mechanical properties are influenced by many factors such as fine-scale features. The predicted mechanical properties obtained by traditional approaches significantly deviate from the measured values in experiments due to neglecting uncertainty of material features. This discrepancy is indicated that the effective macroscopic properties of materials are highly sensitive to various sources of uncertainty, such as loading and boundary conditions and material characteristics, etc., while very few stochastic multiscale models for PNCs have been developed. Therefore, it is essential to construct PNC models within the framework of stochastic modeling and quantify the stochastic effect of the input parameters on the macroscopic mechanical properties of those materials. This study aims to develop computational models at four length scales (nano-, micro-, meso- and macro-scales) and hierarchical upscaling approaches bridging length scales from nano- to macro-scales. A framework for uncertainty quantification (UQ) applied to predict the mechanical properties of the PNCs in dependence of material features at different scales is studied. Sensitivity and uncertainty analysis are of great helps in quantifying the effect of input parameters, considering both main and interaction effects, on the mechanical properties of the PNCs. To achieve this major goal, the following tasks are carried out: At nano-scale, molecular dynamics (MD) were used to investigate deformation mechanism of glassy amorphous polyethylene (PE) in dependence of temperature and strain rate. Steered molecular dynamics (SMD)were also employed to investigate interfacial characteristic of the PNCs. At mico-scale, we developed an atomistic-based continuum model represented by a representative volume element (RVE) in which the SWNT's properties and the SWNT/polymer interphase are modeled at nano-scale, the surrounding polymer matrix is modeled by solid elements. Then, a two-parameter model was employed at meso-scale. A hierarchical multiscale approach has been developed to obtain the structure-property relations at one length scale and transfer the effect to the higher length scales. In particular, we homogenized the RVE into an equivalent fiber. The equivalent fiber was then employed in a micromechanical analysis (i.e. Mori-Tanaka model) to predict the effective macroscopic properties of the PNC. Furthermore, an averaging homogenization process was also used to obtain the effective stiffness of the PCN at meso-scale. Stochastic modeling and uncertainty quantification consist of the following ingredients: - Simple random sampling, Latin hypercube sampling, Sobol' quasirandom sequences, Iman and Conover's method (inducing correlation in Latin hypercube sampling) are employed to generate independent and dependent sample data, respectively. - Surrogate models, such as polynomial regression, moving least squares (MLS), hybrid method combining polynomial regression and MLS, Kriging regression, and penalized spline regression, are employed as an approximation of a mechanical model. The advantage of the surrogate models is the high computational efficiency and robust as they can be constructed from a limited amount of available data. - Global sensitivity analysis (SA) methods, such as variance-based methods for models with independent and dependent input parameters, Fourier-based techniques for performing variance-based methods and partial derivatives, elementary effects in the context of local SA, are used to quantify the effects of input parameters and their interactions on the mechanical properties of the PNCs. A bootstrap technique is used to assess the robustness of the global SA methods with respect to their performance. In addition, the probability distribution of mechanical properties are determined by using the probability plot method. The upper and lower bounds of the predicted Young's modulus according to 95 \% prediction intervals were provided. The above-mentioned methods study on the behaviour of intact materials. Novel numerical methods such as a node-based smoothed extended finite element method (NS-XFEM) and an edge-based smoothed phantom node method (ES-Phantom node) were developed for fracture problems. These methods can be used to account for crack at macro-scale for future works. The predicted mechanical properties were validated and verified. They show good agreement with previous experimental and simulations results.}, subject = {Polymere}, language = {en} } @phdthesis{Budarapu, author = {Budarapu, Pattabhi Ramaiah}, title = {Adaptive multiscale methods for fracture}, doi = {10.25643/bauhaus-universitaet.2391}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20150507-23918}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {One major research focus in the Material Science and Engineering Community in the past decade has been to obtain a more fundamental understanding on the phenomenon 'material failure'. Such an understanding is critical for engineers and scientists developing new materials with higher strength and toughness, developing robust designs against failure, or for those concerned with an accurate estimate of a component's design life. Defects like cracks and dislocations evolve at nano scales and influence the macroscopic properties such as strength, toughness and ductility of a material. In engineering applications, the global response of the system is often governed by the behaviour at the smaller length scales. Hence, the sub-scale behaviour must be computed accurately for good predictions of the full scale behaviour. Molecular Dynamics (MD) simulations promise to reveal the fundamental mechanics of material failure by modeling the atom to atom interactions. Since the atomistic dimensions are of the order of Angstroms ( A), approximately 85 billion atoms are required to model a 1 micro- m^3 volume of Copper. Therefore, pure atomistic models are prohibitively expensive with everyday engineering computations involving macroscopic cracks and shear bands, which are much larger than the atomistic length and time scales. To reduce the computational effort, multiscale methods are required, which are able to couple a continuum description of the structure with an atomistic description. In such paradigms, cracks and dislocations are explicitly modeled at the atomistic scale, whilst a self-consistent continuum model elsewhere. Many multiscale methods for fracture are developed for "fictitious" materials based on "simple" potentials such as the Lennard-Jones potential. Moreover, multiscale methods for evolving cracks are rare. Efficient methods to coarse grain the fine scale defects are missing. However, the existing multiscale methods for fracture do not adaptively adjust the fine scale domain as the crack propagates. Most methods, therefore only "enlarge" the fine scale domain and therefore drastically increase computational cost. Adaptive adjustment requires the fine scale domain to be refined and coarsened. One of the major difficulties in multiscale methods for fracture is to up-scale fracture related material information from the fine scale to the coarse scale, in particular for complex crack problems. Most of the existing approaches therefore were applied to examples with comparatively few macroscopic cracks. Key contributions The bridging scale method is enhanced using the phantom node method so that cracks can be modeled at the coarse scale. To ensure self-consistency in the bulk, a virtual atom cluster is devised providing the response of the intact material at the coarse scale. A molecular statics model is employed in the fine scale where crack propagation is modeled by naturally breaking the bonds. The fine scale and coarse scale models are coupled by enforcing the displacement boundary conditions on the ghost atoms. An energy criterion is used to detect the crack tip location. Adaptive refinement and coarsening schemes are developed and implemented during the crack propagation. The results were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale method is one of the first adaptive multiscale method for fracture. A robust and simple three dimensional coarse graining technique to convert a given atomistic region into an equivalent coarse region, in the context of multiscale fracture has been developed. The developed method is the first of its kind. The developed coarse graining technique can be applied to identify and upscale the defects like: cracks, dislocations and shear bands. The current method has been applied to estimate the equivalent coarse scale models of several complex fracture patterns arrived from the pure atomistic simulations. The upscaled fracture pattern agree well with the actual fracture pattern. The error in the potential energy of the pure atomistic and the coarse grained model was observed to be acceptable. A first novel meshless adaptive multiscale method for fracture has been developed. The phantom node method is replaced by a meshless differential reproducing kernel particle method. The differential reproducing kernel particle method is comparatively more expensive but allows for a more "natural" coupling between the two scales due to the meshless interpolation functions. The higher order continuity is also beneficial. The centro symmetry parameter is used to detect the crack tip location. The developed multiscale method is employed to study the complex crack propagation. Results based on the meshless adaptive multiscale method were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale methods are applied to study the fracture in practical materials like Graphene and Graphene on Silicon surface. The bond stretching and the bond reorientation were observed to be the net mechanisms of the crack growth in Graphene. The influence of time step on the crack propagation was studied using two different time steps. Pure atomistic simulations of fracture in Graphene on Silicon surface are presented. Details of the three dimensional multiscale method to study the fracture in Graphene on Silicon surface are discussed.}, subject = {Material}, language = {en} } @phdthesis{Jia, author = {Jia, Yue}, title = {Methods based on B-splines for model representation, numerical analysis and image registration}, doi = {10.25643/bauhaus-universitaet.2484}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20151210-24849}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {200}, abstract = {The thesis consists of inter-connected parts for modeling and analysis using newly developed isogeometric methods. The main parts are reproducing kernel triangular B-splines, extended isogeometric analysis for solving weakly discontinuous problems, collocation methods using superconvergent points, and B-spline basis in image registration applications. Each topic is oriented towards application of isogeometric analysis basis functions to ease the process of integrating the modeling and analysis phases of simulation. First, we develop reproducing a kernel triangular B-spline-based FEM for solving PDEs. We review the triangular B-splines and their properties. By definition, the triangular basis function is very flexible in modeling complicated domains. However, instability results when it is applied for analysis. We modify the triangular B-spline by a reproducing kernel technique, calculating a correction term for the triangular kernel function from the chosen surrounding basis. The improved triangular basis is capable to obtain the results with higher accuracy and almost optimal convergence rates. Second, we propose an extended isogeometric analysis for dealing with weakly discontinuous problems such as material interfaces. The original IGA is combined with XFEM-like enrichments which are continuous functions themselves but with discontinuous derivatives. Consequently, the resulting solution space can approximate solutions with weak discontinuities. The method is also applied to curved material interfaces, where the inverse mapping and the curved triangular elements are considered. Third, we develop an IGA collocation method using superconvergent points. The collocation methods are efficient because no numerical integration is needed. In particular when higher polynomial basis applied, the method has a lower computational cost than Galerkin methods. However, the positions of the collocation points are crucial for the accuracy of the method, as they affect the convergent rate significantly. The proposed IGA collocation method uses superconvergent points instead of the traditional Greville abscissae points. The numerical results show the proposed method can have better accuracy and optimal convergence rates, while the traditional IGA collocation has optimal convergence only for even polynomial degrees. Lastly, we propose a novel dynamic multilevel technique for handling image registration. It is application of the B-spline functions in image processing. The procedure considered aims to align a target image from a reference image by a spatial transformation. The method starts with an energy function which is the same as a FEM-based image registration. However, we simplify the solving procedure, working on the energy function directly. We dynamically solve for control points which are coefficients of B-spline basis functions. The new approach is more simple and fast. Moreover, it is also enhanced by a multilevel technique in order to prevent instabilities. The numerical testing consists of two artificial images, four real bio-medical MRI brain and CT heart images, and they show our registration method is accurate, fast and efficient, especially for large deformation problems.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Amiri, author = {Amiri, Fatemeh}, title = {Computational modelling of fracture with local maximum entropy approximations}, doi = {10.25643/bauhaus-universitaet.2631}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20160719-26310}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {130}, abstract = {The key objective of this research is to study fracture with a meshfree method, local maximum entropy approximations, and model fracture in thin shell structures with complex geometry and topology. This topic is of high relevance for real-world applications, for example in the automotive industry and in aerospace engineering. The shell structure can be described efficiently by meshless methods which are capable of describing complex shapes as a collection of points instead of a structured mesh. In order to find the appropriate numerical method to achieve this goal, the first part of the work was development of a method based on local maximum entropy (LME) shape functions together with enrichment functions used in partition of unity methods to discretize problems in linear elastic fracture mechanics. We obtain improved accuracy relative to the standard extended finite element method (XFEM) at a comparable computational cost. In addition, we keep the advantages of the LME shape functions,such as smoothness and non-negativity. We show numerically that optimal convergence (same as in FEM) for energy norm and stress intensity factors can be obtained through the use of geometric (fixed area) enrichment with no special treatment of the nodes near the crack such as blending or shifting. As extension of this method to three dimensional problems and complex thin shell structures with arbitrary crack growth is cumbersome, we developed a phase field model for fracture using LME. Phase field models provide a powerful tool to tackle moving interface problems, and have been extensively used in physics and materials science. Phase methods are gaining popularity in a wide set of applications in applied science and engineering, recently a second order phase field approximation for brittle fracture has gathered significant interest in computational fracture such that sharp cracks discontinuities are modeled by a diffusive crack. By minimizing the system energy with respect to the mechanical displacements and the phase-field, subject to an irreversibility condition to avoid crack healing, this model can describe crack nucleation, propagation, branching and merging. One of the main advantages of the phase field modeling of fractures is the unified treatment of the interfacial tracking and mechanics, which potentially leads to simple, robust, scalable computer codes applicable to complex systems. In other words, this approximation reduces considerably the implementation complexity because the numerical tracking of the fracture is not needed, at the expense of a high computational cost. We present a fourth-order phase field model for fracture based on local maximum entropy (LME) approximations. The higher order continuity of the meshfree LME approximation allows to directly solve the fourth-order phase field equations without splitting the fourth-order differential equation into two second order differential equations. Notably, in contrast to previous discretizations that use at least a quadratic basis, only linear completeness is needed in the LME approximation. We show that the crack surface can be captured more accurately in the fourth-order model than the second-order model. Furthermore, less nodes are needed for the fourth-order model to resolve the crack path. Finally, we demonstrate the performance of the proposed meshfree fourth order phase-field formulation for 5 representative numerical examples. Computational results will be compared to analytical solutions within linear elastic fracture mechanics and experimental data for three-dimensional crack propagation. In the last part of this research, we present a phase-field model for fracture in Kirchoff-Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantageous over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.}, language = {en} } @phdthesis{Nanthakumar, author = {Nanthakumar, S.S.}, title = {Inverse and optimization problems in piezoelectric materials using Extended Finite Element Method and Level sets}, doi = {10.25643/bauhaus-universitaet.2709}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20161128-27095}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Piezoelectric materials are used in several applications as sensors and actuators where they experience high stress and electric field concentrations as a result of which they may fail due to fracture. Though there are many analytical and experimental works on piezoelectric fracture mechanics. There are very few studies about damage detection, which is an interesting way to prevent the failure of these ceramics. An iterative method to treat the inverse problem of detecting cracks and voids in piezoelectric structures is proposed. Extended finite element method (XFEM) is employed for solving the inverse problem as it allows the use of a single regular mesh for large number of iterations with different flaw geometries. Firstly, minimization of cost function is performed by Multilevel Coordinate Search (MCS) method. The XFEM-MCS methodology is applied to two dimensional electromechanical problems where flaws considered are straight cracks and elliptical voids. Then a numerical method based on combination of classical shape derivative and level set method for front propagation used in structural optimization is utilized to minimize the cost function. The results obtained show that the XFEM-level set methodology is effectively able to determine the number of voids in a piezoelectric structure and its corresponding locations. The XFEM-level set methodology is improved to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure. The material interfaces are implicitly represented by level sets which are identified by applying regularisation using total variation penalty terms. The formulation is presented for three dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material subdomains in the presence of higher noise levels. Piezoelectric nanostructures exhibit size dependent properties because of surface elasticity and surface piezoelectricity. Initially a study to understand the influence of surface elasticity on optimization of nano elastic beams is performed. The boundary of the nano structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target displacement, are chosen for the numerical examples. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams. Finally a conventional cantilever energy harvester with a piezoelectric nano layer is analysed. The presence of surface piezoelectricity in nano beams and nano plates leads to increase in electromechanical coupling coefficient. Topology optimization of these piezoelectric structures in an energy harvesting device to further increase energy conversion using appropriately modified XFEM-level set algorithm is performed .}, subject = {Finite-Elemente-Methode}, language = {de} } @phdthesis{Ghasemi, author = {Ghasemi, Hamid}, title = {Stochastic optimization of fiber reinforced composites considering uncertainties}, doi = {10.25643/bauhaus-universitaet.2704}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20161117-27042}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {140}, abstract = {Briefly, the two basic questions that this research is supposed to answer are: 1. Howmuch fiber is needed and how fibers should be distributed through a fiber reinforced composite (FRC) structure in order to obtain the optimal and reliable structural response? 2. How do uncertainties influence the optimization results and reliability of the structure? Giving answer to the above questions a double stage sequential optimization algorithm for finding the optimal content of short fiber reinforcements and their distribution in the composite structure, considering uncertain design parameters, is presented. In the first stage, the optimal amount of short fibers in a FRC structure with uniformly distributed fibers is conducted in the framework of a Reliability Based Design Optimization (RBDO) problem. Presented model considers material, structural and modeling uncertainties. In the second stage, the fiber distribution optimization (with the aim to further increase in structural reliability) is performed by defining a fiber distribution function through a Non-Uniform Rational BSpline (NURBS) surface. The advantages of using the NURBS surface as a fiber distribution function include: using the same data set for the optimization and analysis; high convergence rate due to the smoothness of the NURBS; mesh independency of the optimal layout; no need for any post processing technique and its non-heuristic nature. The output of stage 1 (the optimal fiber content for homogeneously distributed fibers) is considered as the input of stage 2. The output of stage 2 is the Reliability Index (b ) of the structure with the optimal fiber content and distribution. First order reliability method (in order to approximate the limit state function) as well as different material models including Rule of Mixtures, Mori-Tanaka, energy-based approach and stochastic multi-scales are implemented in different examples. The proposed combined model is able to capture the role of available uncertainties in FRC structures through a computationally efficient algorithm using all sequential, NURBS and sensitivity based techniques. The methodology is successfully implemented for interfacial shear stress optimization in sandwich beams and also for optimization of the internal cooling channels in a ceramic matrix composite. Finally, after some changes and modifications by combining Isogeometric Analysis, level set and point wise density mapping techniques, the computational framework is extended for topology optimization of piezoelectric / flexoelectric materials.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Abbas, author = {Abbas, Tajammal}, title = {Assessment of Numerical Prediction Models for Aeroelastic Instabilities of Bridges}, publisher = {Jonas Verlag}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.2716}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180515-27161}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {275}, abstract = {The phenomenon of aerodynamic instability caused by the wind is usually a major design criterion for long-span cable-supported bridges. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary, therefore, requires accurate and robust models. The complexity and uncertainty of models for such engineering problems demand strategies for model assessment. This study is an attempt to use the concepts of sensitivity and uncertainty analyses to assess the aeroelastic instability prediction models for long-span bridges. The state-of-the-art theory concerning the determination of the flutter stability limit is presented. Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of structural and aerodynamic models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the coupled model.}, subject = {Br{\"u}cke}, language = {en} } @phdthesis{Abeltshauser, author = {Abeltshauser, Rainer}, title = {Identification and separation of physical effects of coupled systems by using defined model abstractions}, doi = {10.25643/bauhaus-universitaet.2860}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28600}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project "Absolute Values" of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines. Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria. At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine.}, subject = {Strukturdynamik}, language = {en} } @phdthesis{Schwedler, author = {Schwedler, Michael}, title = {Integrated structural analysis using isogeometric finite element methods}, doi = {10.25643/bauhaus-universitaet.2737}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170130-27372}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {209}, abstract = {The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration. An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof. The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback. The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested. Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model. The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed. When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure.}, subject = {Finite-Elemente-Methode}, language = {en} }