@article{VoelkerMaempelKornadt, author = {V{\"o}lker, Conrad and M{\"a}mpel, Silvio and Kornadt, Oliver}, title = {Measuring the human body's micro-climate using a thermal manikin}, series = {Indoor Air}, journal = {Indoor Air}, number = {24, 6}, doi = {10.25643/bauhaus-universitaet.3815}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181025-38153}, pages = {567 -- 579}, abstract = {The human body is surrounded by a micro-climate which results from its convective release of heat. In this study, the air temperature and flow velocity of this micro-climate were measured in a climate chamber at various room temperatures, using a thermal manikin simulating the heat release of the human being. Different techniques (Particle Streak Tracking, thermography, anemometry, and thermistors) were used for measurement and visualization. The manikin surface temperature was adjusted to the particular indoor climate based on simulations with a thermoregulation model (UCBerkeley Thermal Comfort Model). We found that generally, the micro-climate is thinner at the lower part of the torso, but expands going up. At the head, there is a relatively thick thermal layer, which results in an ascending plume above the head. However, the micro-climate shape strongly depends not only on the body segment, but also on boundary conditions: the higher the temperature difference between the surface temperature of the manikin and the air temperature, the faster the air flow in the micro-climate. Finally, convective heat transfer coefficients strongly increase with falling room temperature, while radiative heat transfer coefficients decrease. The type of body segment strongly influences the convective heat transfer coefficient, while only minimally influencing the radiative heat transfer coefficient.}, subject = {Raumklima}, language = {en} } @inproceedings{PastohrKornadtGuerlebeck2003, author = {Pastohr, Henry and Kornadt, Oliver and G{\"u}rlebeck, Klaus}, title = {Numerische Untersuchungen zum Thermischen Str{\"o}mungsverhalten im Aufwindkraftwerk}, doi = {10.25643/bauhaus-universitaet.343}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3436}, year = {2003}, abstract = {Das Aufwindkraftwerk ist eine thermo- hydrodynamische Maschine zur Elektroenergiegewinnung, bestehend aus einem Treibhaus, einem Kamin und einer oder mehreren Turbinen. In dieser Studie wurden numerische Ergebnisse zum thermischen Str{\"o}mungsverhalten in einem Aufwindkraftwerk unter der Ber{\"u}cksichtigung der Teilmodelle Erdboden, Kollektor, Atmosph{\"a}re, Umlenkung, Kamin und Turbine erhaltenden. Hierzu wurden die station{\"a}ren Grundgleichungen der Thermofluiddynamik auf strukturierten, k{\"o}rperangepassten und rotationssymmetrischen Gittern unter Beachtung aller Rand- und Kopplungsbedingungen numerisch mit dem finite Volumenverfahren gel{\"o}st. Besonderes Augenmerk wurde dabei auf die Kalibrierung des Modells im Ruhezustand, auf die numerische Simulation, auf den Einfluss der Strahlung, auf die Betrachtung der Turbine, auf das Dichtemodell sowie auf den turbulenten Str{\"o}mungszustand gelegt. Die erhaltenen Ergebnisse werden durch Approximationen 2. Ordnung, Gitterunabh{\"a}ngigkeit und durch einen sehr geringen Abbruchfehler charakterisiert. F{\"u}r 4 verschiedene Einstrahlungen wurden die Verl{\"a}ufe von Temperatur und Geschwindigkeit im Aufwindkraftwerk erhalten. Zus{\"a}tzlich sind f{\"u}r Vergleichszwecke der Massenstrom, der Temperaturhub, die Leistung an der Turbine und der Wirkungsgrad der Anlage bestimmt wurden. Aufbauend auf den Berechnungen in dieser Arbeit und den numerischen und analytischen Berechnungen in [1] k{\"o}nnen nun erweiterte Parameterstudien und instation{\"a}re Simulationen zum Aufwindkraftwerk durchgef{\"u}hrt werden.}, subject = {Aufwindkraftwerk}, language = {de} }