@article{RenZhuangOterkusetal., author = {Ren, Huilong and Zhuang, Xiaoying and Oterkus, Erkan and Zhu, Hehua and Rabczuk, Timon}, title = {Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method}, series = {Engineering with Computers}, volume = {2021}, journal = {Engineering with Computers}, doi = {10.1007/s00366-021-01502-8}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45388}, pages = {1 -- 22}, abstract = {The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate.}, subject = {Bruchmechanik}, language = {en} } @article{NooriMortazaviKeshtkarietal., author = {Noori, Hamidreza and Mortazavi, Bohayra and Keshtkari, Leila and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Nanopore creation in MoS2 and graphene monolayers by nanoparticles impact: a reactive molecular dynamics study}, series = {Applied Physics A}, volume = {2021}, journal = {Applied Physics A}, number = {volume 127, article 541}, publisher = {Springer}, address = {Heidelberg}, doi = {10.1007/s00339-021-04693-5}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210804-44756}, pages = {1 -- 13}, abstract = {In this work, extensive reactive molecular dynamics simulations are conducted to analyze the nanopore creation by nano-particles impact over single-layer molybdenum disulfide (MoS2) with 1T and 2H phases. We also compare the results with graphene monolayer. In our simulations, nanosheets are exposed to a spherical rigid carbon projectile with high initial velocities ranging from 2 to 23 km/s. Results for three different structures are compared to examine the most critical factors in the perforation and resistance force during the impact. To analyze the perforation and impact resistance, kinetic energy and displacement time history of the projectile as well as perforation resistance force of the projectile are investigated. Interestingly, although the elasticity module and tensile strength of the graphene are by almost five times higher than those of MoS2, the results demonstrate that 1T and 2H-MoS2 phases are more resistive to the impact loading and perforation than graphene. For the MoS2nanosheets, we realize that the 2H phase is more resistant to impact loading than the 1T counterpart. Our reactive molecular dynamics results highlight that in addition to the strength and toughness, atomic structure is another crucial factor that can contribute substantially to impact resistance of 2D materials. The obtained results can be useful to guide the experimental setups for the nanopore creation in MoS2or other 2D lattices.}, subject = {Nanomechanik}, language = {en} } @article{VuBacLahmerZhuangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhuang, Xiaoying and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, series = {Advances in Engineering Software}, journal = {Advances in Engineering Software}, pages = {19 -- 31}, abstract = {A software framework for probabilistic sensitivity analysis for computationally expensive models}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Park, Harold S. and Rabczuk, Timon}, title = {Topology optimization of piezoelectric nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, pages = {316 -- 335}, abstract = {Topology optimization of piezoelectric nanostructures}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Zi, Goangseup and Rabczuk, Timon}, title = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, series = {Inverse Problems in Science and Engineering}, journal = {Inverse Problems in Science and Engineering}, pages = {153 -- 176}, abstract = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach}, series = {Structural and Multidisciplinary Optimization}, journal = {Structural and Multidisciplinary Optimization}, pages = {99 -- 112}, abstract = {Optimum _ber content and distribution in _ber-reinforced solids using a reliability and NURBS based sequential optimization approach}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacSilaniLahmeretal., author = {Vu-Bac, N. and Silani, Mohammad and Lahmer, Tom and Zhuang, Xiaoying and Rabczuk, Timon}, title = {A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs)}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {520 -- 535}, abstract = {A unified framework for stochastic predictions of Young's modulus of clay/epoxy nanocomposites (PCNs)}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Zi, Goangseup and Rabczuk, Timon}, title = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, series = {Inverse Problems in Science and Engineering}, journal = {Inverse Problems in Science and Engineering}, abstract = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacRafieeZhuangetal., author = {Vu-Bac, N. and Rafiee, Roham and Zhuang, Xiaoying and Lahmer, Tom and Rabczuk, Timon}, title = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {446 -- 464}, abstract = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThanhValizadehNguyenetal., author = {Nguyen-Thanh, Nhon and Valizadeh, Navid and Nguyen, Manh Hung and Nguyen-Xuan, Hung and Zhuang, Xiaoying and Areias, Pedro and Zi, Goangseup and Bazilevs, Yuri and De Lorenzis, Laura and Rabczuk, Timon}, title = {An extended isogeometric thin shell analysis based on Kirchhoff-Love theory}, series = {Computer Methods in Applied Mechanics and Engineering}, journal = {Computer Methods in Applied Mechanics and Engineering}, pages = {265 -- 291}, abstract = {An extended isogeometric thin shell analysis based on Kirchho_-Love theory}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerZhangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhang, Yancheng and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {80 -- 95}, abstract = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiRafieeZhuangetal., author = {Ghasemi, Hamid and Rafiee, Roham and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {295 -- 305}, abstract = {Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangZhuangMuthuetal., author = {Zhang, Yancheng and Zhuang, Xiaoying and Muthu, Jacob and Mabrouki, Tarek and Fontaine, Micha{\"e}l and Gong, Yadong and Rabczuk, Timon}, title = {Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {27 -- 33}, abstract = {Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenThanhMuthuZhuangetal., author = {Nguyen-Thanh, Nhon and Muthu, Jacob and Zhuang, Xiaoying and Rabczuk, Timon}, title = {An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics}, series = {Computational Mechanics}, journal = {Computational Mechanics}, pages = {369 -- 385}, abstract = {An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Optimization of fiber distribution in fiber reinforced composite by using NURBS functions}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {463 -- 473}, abstract = {Optimization of fiber distribution in fiber reinforced composite by using NURBS functions}, subject = {Angewandte Mathematik}, language = {en} } @article{GhasemiBrighentiZhuangetal., author = {Ghasemi, Hamid and Brighenti, Roberto and Zhuang, Xiaoying and Muthu, Jacob and Rabczuk, Timon}, title = {Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements}, series = {Structural and Multidisciplinary Optimization}, journal = {Structural and Multidisciplinary Optimization}, abstract = {Sequential reliability based optimization of fiber content and dispersion in fiber reinforced composite by using NURBS finite elements}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhuangHuangLiangetal., author = {Zhuang, Xiaoying and Huang, Runqiu and Liang, Chao and Rabczuk, Timon}, title = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, doi = {10.1155/2014/179169}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170428-31726}, abstract = {Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES) provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM) modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.}, subject = {Energiespeicherung}, language = {en} } @article{ZhuangHuangRabczuketal., author = {Zhuang, Xiaoying and Huang, Runqiu and Rabczuk, Timon and Liang, C.}, title = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, series = {Mathematical Problems in Engineering}, journal = {Mathematical Problems in Engineering}, abstract = {A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage}, subject = {Angewandte Mathematik}, language = {en} } @article{BudarapuGracieYangetal., author = {Budarapu, Pattabhi Ramaiah and Gracie, Robert and Yang, Shih-Wei and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Efficient Coarse Graining in Multiscale Modeling of Fracture}, series = {Theoretical and Applied Fracture Mechanics}, journal = {Theoretical and Applied Fracture Mechanics}, pages = {126 -- 143}, abstract = {Efficient Coarse Graining in Multiscale Modeling of Fracture}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacLahmerKeiteletal., author = {Vu-Bac, N. and Lahmer, Tom and Keitel, Holger and Zhao, Jun-Hua and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, series = {Mechanics of Materials}, journal = {Mechanics of Materials}, pages = {70 -- 84}, abstract = {Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations}, subject = {Angewandte Mathematik}, language = {en} }