@article{BuschowSuhrSerger, author = {Buschow, Christopher and Suhr, Maike and Serger, Hauke}, title = {Media Work as Field Advancement: The Case of Science Media Center Germany}, series = {Media and Communication}, volume = {2022}, journal = {Media and Communication}, number = {Volume 10, issue 1}, publisher = {Cogitatio Press}, address = {Lisbon}, doi = {10.17645/mac.v10i1.4454}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220125-45709}, pages = {99 -- 109}, abstract = {In the wake of the news industry's digitization, novel organizations that differ considerably from traditional media firms in terms of their functional roles and organizational practices of media work are emerging. One new type is the field repair organization, which is characterized by supporting high-quality media work to compensate for the deficits (such as those which come from cost savings and layoffs) which have become apparent in legacy media today. From a practice-theoretical research perspective and based on semi-structured interviews, virtual field observations, and document analysis, we have conducted a single case study on Science Media Center Germany (SMC), a unique non-profit news start-up launched in 2016 in Cologne, Germany. Our findings show that, in addition to field repair activities, SMC aims to facilitate progress and innovation in the field, which we refer to as field advancement. This helps to uncover emerging needs and anticipates problems before they intensify or even occur, proactively providing products and tools for future journalism. This article contributes to our understanding of novel media organizations with distinct functions in the news industry, allowing for advancements in theory on media work and the organization of journalism in times of digital upheaval.}, subject = {Journalismus}, language = {en} } @article{KrausCrişanWittor, author = {Kraus, Matthias and Cri{\c{s}}an, Nicolae-Andrei and Wittor, Bj{\"o}rn}, title = {Stability Study of Cantilever-Beams - Numerical Analysis and Analytical Calculation (LTB)}, series = {ce/papers}, volume = {2021}, journal = {ce/papers}, number = {Volume 4, issue 2-4}, publisher = {Ernst \& Sohn, a Wiley brand}, address = {Berlin}, doi = {10.1002/cepa.1539}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45637}, pages = {2199 -- 2206}, abstract = {According to Eurocode, the computation of bending strength for steel cantilever beams is a straightforward process. The approach is based on an Ayrton-Perry formula adaptation of buckling curves for steel members in compression, which involves the computation of an elastic critical buckling load for considering the instability. NCCI documents offer a simplified formula to determine the critical bending moment for cantilevers beams with symmetric cross-section. Besides the NCCI recommendations, other approaches, e.g. research literature or Finite-Element-Analysis, may be employed to determine critical buckling loads. However, in certain cases they render different results. Present paper summarizes and compares the abovementioned analytical and numerical approaches for determining critical loads and it exemplarily analyses corresponding cantilever beam capacities using numerical approaches based on plastic zones theory (GMNIA).}, subject = {Tr{\"a}ger}, language = {en} } @article{IbanezKraus, author = {Ibanez, Stalin and Kraus, Matthias}, title = {A Numerical Approach for Plastic Cross Cross-Sectional Analyses of Steel Members}, series = {ce/papers}, volume = {2021}, journal = {ce/papers}, number = {Volume 4, issue 2-4}, publisher = {Ernst \& Sohn, a Wiley brand}, address = {Berlin}, doi = {10.1002/cepa.1527}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45622}, pages = {2098 -- 2106}, abstract = {Global structural analyses in civil engineering are usually performed considering linear-elastic material behavior. However, for steel structures, a certain degree of plasticization depending on the member classification may be considered. Corresponding plastic analyses taking material nonlinearities into account are effectively realized using numerical methods. Frequently applied finite elements of two and three-dimensional models evaluate the plasticity at defined nodes using a yield surface, i.e. by a yield condition, hardening rule, and flow rule. Corresponding calculations are connected to a large numerical as well as time-consuming effort and they do not rely on the theoretical background of beam theory, to which the regulations of standards mainly correspond. For that reason, methods using beam elements (one-dimensional) combined with cross-sectional analyses are commonly applied for steel members in terms of plastic zones theories. In these approaches, plasticization is in general assessed by means of axial stress only. In this paper, more precise numerical representation of the combined stress states, i.e. axial and shear stresses, is presented and results of the proposed approach are validated and discussed.}, subject = {Stahlkonstruktion}, language = {en} } @article{MullisSchipper, author = {Mullis, Daniel and Schipper, Sebastian}, title = {Die postdemokratische Stadt zwischen Politisierung und Kontinuit{\"a}t. Oder ist die Stadt jemals demokratisch gewesen?}, series = {sub\urban. Zeitschrift f{\"u}r Kritische Stadtforschung}, volume = {2013}, journal = {sub\urban. Zeitschrift f{\"u}r Kritische Stadtforschung}, number = {Band 1, Heft 2}, publisher = {sub\urban e.V.}, address = {Berlin}, doi = {10.36900/suburban.v1i2.97}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45600}, pages = {79 -- 100}, abstract = {In der kritischen Stadtforschung wird die These der postdemokratischen Stadt aktuell immer wieder aufgegriffen und dabei eng mit Prozessen der Neoliberalisierung verkn{\"u}pft. Ausgehend von einer kritischen Diskussion der konzeptionellen Zug{\"a}nge bei Colin Crouch und Jacques Ranci{\`e}re geht der Beitrag anhand der Geschichte der kommunalen Selbstverwaltung in Frankfurt am Main dem Gehalt der beiden Begriffsbestimmungen in der konkreten historischen Analyse nach. Verwiesen wird dabei auf die unterschiedliche Analysetiefe der beiden Konzepte. Entgegen der bei Crouch vorherrschenden Annahme, dass es vor der neoliberalen Stadt eine demokratische Form st{\"a}dtischen Regierens gegeben hat, wird unter R{\"u}ckbezug auf die Argumentation Ranci{\`e}res zur Demokratie betont, dass der Fordismus keinesfalls als egalit{\"a}rer, inklusiver oder demokratischer charakterisiert werden kann. Vielmehr vertreten wir die These, dass die fordistische Stadt zwar aus anderen Gr{\"u}nden, aber vom Grundsatz her nicht weniger postdemokratisch gewesen ist als die neoliberale der Gegenwart und dass die demokratischen Momente am ehesten in den Br{\"u}chen und Spalten der sozialen Konflikte der 1970er und 1980er Jahre gefunden werden k{\"o}nnen.}, subject = {Stadtplanung}, language = {de} } @article{Birkholz, author = {Birkholz, Marie Luise}, title = {M{\"a}chtiger Boden. Essay {\"u}ber den Versuch, einen Staatsapparat zu erlaufen}, series = {sub\urban. Zeitschrift f{\"u}r Kritische Stadtforschung}, volume = {2015}, journal = {sub\urban. Zeitschrift f{\"u}r Kritische Stadtforschung}, number = {Band 3, Heft 2}, publisher = {ub\urban e.V.}, address = {Berlin}, doi = {10.36900/suburban.v3i2.200}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45591}, pages = {141 -- 154}, abstract = {Der Text folgt in essayistischer Form einem Spaziergang durch das politische Zentrum Bras{\´i}lias in Brasilien. Die Konzentration liegt auf der Gestaltung des Bodens. Wie ist die Planhauptstadt „vom Reißbrett" in der Horizontalen gestaltet? Wie sehen repr{\"a}sentative Pl{\"a}tze einer Stadt aus, die vor allem f{\"u}r Autos gebaut worden ist? Der forschende Blick liegt auf dem erlebten Ist-Zustand und wird assoziativ mit Ergebnissen der Forschungsarbeit aus Deutschland reflektiert. „M{\"a}chtiger Boden" entstand als Satellit zur aktuellen Forschung der Autorin im Rahmen eines Aufenthalts in Brasilien.}, subject = {Brasilia}, language = {de} } @article{SchmidtLahmer, author = {Schmidt, Albrecht and Lahmer, Tom}, title = {Efficient domain decomposition based reliability analysis for polymorphic uncertain material parameters}, series = {Proceedings in Applied Mathematics \& Mechanics}, volume = {2021}, journal = {Proceedings in Applied Mathematics \& Mechanics}, number = {Volume 21, issue 1}, publisher = {Wiley-VHC}, address = {Weinheim}, doi = {10.1002/pamm.202100014}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45563}, pages = {1 -- 4}, abstract = {Realistic uncertainty description incorporating aleatoric and epistemic uncertainties can be described within the framework of polymorphic uncertainty, which is computationally demanding. Utilizing a domain decomposition approach for random field based uncertainty models the proposed level-based sampling method can reduce these computational costs significantly and shows good agreement with a standard sampling technique. While 2-level configurations tend to get unstable with decreasing sampling density 3-level setups show encouraging results for the investigated reliability analysis of a structural unit square.}, subject = {Polymorphie}, language = {en} } @article{KrausKlausWittor, author = {Kraus, Matthias and Klaus, Martin and Wittor, Bj{\"o}rn}, title = {Experimental Analyses on the Resistance of Tapped Blind Holes}, series = {ce/papers}, volume = {2021}, journal = {ce/papers}, number = {Volume 4, issue 2-4}, publisher = {Ernst \& Sohn, a Wiley brand}, address = {Berlin}, doi = {10.1002/cepa.1273}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45553}, pages = {141 -- 147}, abstract = {Bolted connections are commonly used in steel construction. The load-bearing behavior of bolt fittings has extensively been studied in various research activities and the bearing capacity of bolted connections can be assessed well by standard regulations for practical applications. With regard to tensile loading, the nut does not have strong influence on resistances, since the failure occurs in the bolts due to higher material strengths of the nuts. In some applications, so-called "blind holes" are used to connect plated components. In a manner of speaking, the nut is replaced by the "outer" plate with a prefabricated hole and thread, in which the bolt can be screwed and tightened. In such connections, the limit load capacity cannot solely be assessed by the bolt resistance, since the threaded hole in the base material has strong influence on the structural behavior. In this context, the available screw-in depth of the blind hole is of fundamental importance. The German National Annex of EN 1993-1-8 provides information on a necessary depth in order to transfer the full tensile capacity of the bolt. However, some connections do not allow to fabricate such depths. In these cases, the capacity of the connection is unclear and not specified. In this paper, first experiments on corresponding connections with different screw-in depths are presented and compared to limit load capacities according to the standard.}, subject = {Gewinde}, language = {en} } @article{MeiabadiMoradiKaramimoghadametal., author = {Meiabadi, Mohammad Saleh and Moradi, Mahmoud and Karamimoghadam, Mojtaba and Ardabili, Sina and Bodaghi, Mahdi and Shokri, Manouchehr and Mosavi, Amir Hosein}, title = {Modeling the Producibility of 3D Printing in Polylactic Acid Using Artificial Neural Networks and Fused Filament Fabrication}, series = {polymers}, volume = {2021}, journal = {polymers}, number = {Volume 13, issue 19, article 3219}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/polym13193219}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220110-45518}, pages = {1 -- 21}, abstract = {Polylactic acid (PLA) is a highly applicable material that is used in 3D printers due to some significant features such as its deformation property and affordable cost. For improvement of the end-use quality, it is of significant importance to enhance the quality of fused filament fabrication (FFF)-printed objects in PLA. The purpose of this investigation was to boost toughness and to reduce the production cost of the FFF-printed tensile test samples with the desired part thickness. To remove the need for numerous and idle printing samples, the response surface method (RSM) was used. Statistical analysis was performed to deal with this concern by considering extruder temperature (ET), infill percentage (IP), and layer thickness (LT) as controlled factors. The artificial intelligence method of artificial neural network (ANN) and ANN-genetic algorithm (ANN-GA) were further developed to estimate the toughness, part thickness, and production-cost-dependent variables. Results were evaluated by correlation coefficient and RMSE values. According to the modeling results, ANN-GA as a hybrid machine learning (ML) technique could enhance the accuracy of modeling by about 7.5, 11.5, and 4.5\% for toughness, part thickness, and production cost, respectively, in comparison with those for the single ANN method. On the other hand, the optimization results confirm that the optimized specimen is cost-effective and able to comparatively undergo deformation, which enables the usability of printed PLA objects.}, subject = {3D-Druck}, language = {en} } @article{AlsaadHartmannVoelker, author = {Alsaad, Hayder and Hartmann, Maria and V{\"o}lker, Conrad}, title = {Hygrothermal simulation data of a living wall system for decentralized greywater treatment}, series = {Data in Brief}, volume = {2022}, journal = {Data in Brief}, number = {volume 40, article 107741}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.dib.2021.107741}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220106-45483}, pages = {12}, abstract = {This dataset presents the numerical analysis of the heat and moisture transport through a facade equipped with a living wall system designated for greywater treatment. While such greening systems provide many environmental benefits, they involve pumping large quantities of water onto the wall assembly, which can increase the risk of moisture in the wall as well as impaired energetic performance due to increased thermal conductivity with increased moisture content in the building materials. This dataset was acquired through numerical simulation using the coupling of two simulation tools, namely Envi-Met and Delphin. This coupling was used to include the complex role the plants play in shaping the near-wall environmental parameters in the hygrothermal simulations. Four different wall assemblies were investigated, each assembly was assessed twice: with and without the living wall. The presented data include the input and output parameters of the simulations, which were presented in the co-submitted article [1].}, subject = {Kupplung}, language = {en} } @article{KleinerRoesslerVogtetal., author = {Kleiner, Florian and R{\"o}ßler, Christiane and Vogt, Franziska and Osburg, Andrea and Ludwig, Horst-Michael}, title = {Reconstruction of calcium silicate hydrates using multiple 2D and 3D imaging techniques: Light microscopy, μ-CT, SEM, FIB-nT combined with EDX}, series = {Journal of Microscopy}, volume = {2021}, journal = {Journal of Microscopy}, publisher = {John Wiley \& Sons Ltd}, address = {Oxford}, doi = {10.1111/jmi.13081}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220106-45458}, pages = {1 -- 6}, abstract = {This study demonstrates the application and combination of multiple imaging techniques [light microscopy, micro-X-ray computer tomography (μ-CT), scanning electron microscopy (SEM) and focussed ion beam - nano-tomography (FIB-nT)] to the analysis of the microstructure of hydrated alite across multiple scales. However, by comparing findings with mercury intrusion porosimetry (MIP), it becomes obvious that the imaged 3D volumes and 2D images do not sufficiently overlap at certain scales to allow a continuous quantification of the pore size distribution (PSD). This can be overcome by improving the resolution and increasing the measured volume. Furthermore, results show that the fibrous morphology of calcium-silicate-hydrates (C-S-H) phases is preserved during FIB-nT. This is a requirement for characterisation of nano-scale porosity. Finally, it was proven that the combination of FIB-nT with energy-dispersive X-ray spectroscopy (EDX) data facilitates the phase segmentation of a 11 × 11 × 7.7 μm3 volume of hydrated alite.}, subject = {Zementklinker}, language = {en} } @article{JiangRoesslerWellmannetal., author = {Jiang, Mingze and R{\"o}ßler, Christiane and Wellmann, Eva and Klaver, Jop and Kleiner, Florian and Schmatz, Joyce}, title = {Workflow for high-resolution phase segmentation of cement clinker fromcombined BSE image and EDX spectral data}, series = {Journal of Microscopy}, volume = {2021}, journal = {Journal of Microscopy}, publisher = {Wiley-Blackwell}, address = {Oxford}, doi = {10.1111/jmi.13072}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211215-45449}, pages = {1 -- 7}, abstract = {Burning of clinker is the most influencing step of cement quality during the production process. Appropriate characterisation for quality control and decision-making is therefore the critical point to maintain a stable production but also for the development of alternative cements. Scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDX) delivers spatially resolved phase and chemical information for cement clinker. This data can be used to quantify phase fractions and chemical composition of identified phases. The contribution aims to provide an overview of phase fraction quantification by semi-automatic phase segmentation using high-resolution backscattered electron (BSE) images and lower-resolved EDX element maps. Therefore, a tool for image analysis was developed that uses state-of-the-art algorithms for pixel-wise image segmentation and labelling in combination with a decision tree that allows searching for specific clinker phases. Results show that this tool can be applied to segment sub-micron scale clinker phases and to get a quantification of all phase fractions. In addition, statistical evaluation of the data is implemented within the tool to reveal whether the imaged area is representative for all clinker phases.}, subject = {Zementklinker}, language = {en} } @article{Wenzel, author = {Wenzel, Mirjam}, title = {Das partikulare Ged{\"a}chtnis j{\"u}discher Museen}, doi = {10.25643/bauhaus-universitaet.4535}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211129-45355}, pages = {24}, abstract = {Bauhaus-Gastprofessorin Mirjam Wenzel referierte am 30. Juni 2021 im Audimax der Bauhaus-Universit{\"a}t Weimar zur Entstehungsgeschichte und Konzeption J{\"u}discher Museen. Dabei ging sie darauf ein, inwiefern diese Museen besonders relevant f{\"u}r aktuelle gesellschaftliche und politische Fragestellungen sind. Prof. Wenzels zweiter {\"o}ffentlicher Vortrag an der Bauhaus-Universit{\"a}t Weimar skizzierte die Potentiale von Kultureinrichtungen in Zeiten gesellschaftspolitischer Ver{\"a}nderungen im Allgemeinen und die Bedeutung J{\"u}discher Museen angesichts verbaler und t{\"a}tlicher Gewalt gegen J{\"u}dinnen und Juden im Besonderen.}, subject = {Ged{\"a}chtnis}, language = {de} } @article{Schwerzmann, author = {Schwerzmann, Katia}, title = {Abolish! Against the Use of Risk Assessment Algorithms at Sentencing in the US Criminal Justice System}, series = {Philosophy \& Technology}, volume = {2021}, journal = {Philosophy \& Technology}, doi = {10.1007/s13347-021-00491-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45417}, pages = {1 -- 22}, abstract = {In this article, I show why it is necessary to abolish the use of predictive algorithms in the US criminal justice system at sentencing. After presenting the functioning of these algorithms in their context of emergence, I offer three arguments to demonstrate why their abolition is imperative. First, I show that sentencing based on predictive algorithms induces a process of rewriting the temporality of the judged individual, flattening their life into a present inescapably doomed by its past. Second, I demonstrate that recursive processes, comprising predictive algorithms and the decisions based on their predictions, systematically suppress outliers and progressively transform reality to match predictions. In my third and final argument, I show that decisions made on the basis of predictive algorithms actively perform a biopolitical understanding of justice as management and modulation of risks. In such a framework, justice becomes a means to maintain a perverse social homeostasis that systematically exposes disenfranchised Black and Brown populations to risk.}, subject = {Biopolitik}, language = {en} } @article{SchmitzKraft, author = {Schmitz, Tonia and Kraft, Eckhard}, title = {Pilot scale photobioreactor system for land-based macroalgae cultivation}, series = {Journal of Applied Phycology}, volume = {2021}, journal = {Journal of Applied Phycology}, doi = {10.1007/s10811-021-02617-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45401}, pages = {1 -- 10}, abstract = {Marine macroalgae such as Ulva intestinalis have promising properties as feedstock for cosmetics and pharmaceuticals. However, since the quantity and quality of naturally grown algae vary widely, their exploitability is reduced - especially for producers in high-priced markets. Moreover, the expansion of marine or shore-based cultivation systems is unlikely in Europe, since promising sites either lie in fishing zones, recreational areas, or natural reserves. The aim was therefore to develop a closed photobioreactor system enabling full control of abiotic environmental parameters and an effective reconditioning of the cultivation medium in order to produce marine macroalgae at sites distant from the shore. To assess the feasibility and functionality of the chosen technological concept, a prototypal plant has been implemented in central Germany - a site distant from the sea. Using a newly developed, submersible LED light source, cultivation experiments with Ulva intestinalis led to growth rates of 7.72 ± 0.04 \% day-1 in a cultivation cycle of 28 days. Based on the space demand of the production system, this results in fresh mass productivity of 3.0 kg m-2, respectively, of 1.1 kg m-2 per year. Also considering the ratio of biomass to energy input amounting to 2.76 g kWh-1, significant future improvements of the developed photobioreactor system should include the optimization of growth parameters, and the reduction of the system's overall energy demand.}, subject = {Makroalgen}, language = {en} } @article{MuellerLudwigTangeHasholt, author = {M{\"u}ller, Matthias and Ludwig, Horst-Michael and Tange Hasholt, Marianne}, title = {Salt frost attack on concrete: the combined effect of cryogenic suction and chloride binding on ice formation}, series = {Materials and Structures}, volume = {2021}, journal = {Materials and Structures}, number = {issue 54, article 189}, doi = {10.1617/s11527-021-01779-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45392}, pages = {1 -- 16}, abstract = {Scaling of concrete due to salt frost attack is an important durability issue in moderate and cold climates. The actual damage mechanism is still not completely understood. Two recent damage theories—the glue spall theory and the cryogenic suction theory—offer plausible, but conflicting explanations for the salt frost scaling mechanism. The present study deals with the cryogenic suction theory, which assumes that freezing concrete can take up unfrozen brine from a partly frozen deicing solution during salt frost attack. According to the model hypothesis, the resulting saturation of the concrete surface layer intensifies the ice formation in this layer and causes salt frost scaling. In this study an experimental technique was developed that makes it possible to quantify to which extent brine uptake can increase ice formation in hardened cement paste (used as a model material for concrete). The experiments were carried out with low temperature differential scanning calorimetry, where specimens were subjected to freeze-thaw cycles while being in contact with NaCl brine. Results showed that the ice content in the specimens increased with subsequent freeze-thaw cycles due to the brine uptake at temperatures below 0 °C. The ability of the hardened cement paste to bind chlorides from the absorbed brine at the same time affected the freezing/melting behavior of the pore solution and the magnitude of the ice content.}, subject = {Beton}, language = {en} } @article{RenZhuangOterkusetal., author = {Ren, Huilong and Zhuang, Xiaoying and Oterkus, Erkan and Zhu, Hehua and Rabczuk, Timon}, title = {Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method}, series = {Engineering with Computers}, volume = {2021}, journal = {Engineering with Computers}, doi = {10.1007/s00366-021-01502-8}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45388}, pages = {1 -- 22}, abstract = {The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate.}, subject = {Bruchmechanik}, language = {en} } @article{AnicPenavaSarhosisetal., author = {Anic, Filip and Penava, Davorin and Sarhosis, Vasilis and Abrahamczyk, Lars}, title = {Development and Calibration of a 3D Micromodel for Evaluation of Masonry Infilled RC Frame Structural Vulnerability to Earthquakes}, series = {Geosciences}, volume = {2021}, journal = {Geosciences}, number = {Voume 11, issue 11, article 468}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/geosciences11110468}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211202-45370}, pages = {23}, abstract = {Within the scope of literature, the influence of openings within the infill walls that are bounded by a reinforced concrete frame and excited by seismic drift forces in both in- and out-of-plane direction is still uncharted. Therefore, a 3D micromodel was developed and calibrated thereafter, to gain more insight in the topic. The micromodels were calibrated against their equivalent physical test specimens of in-plane, out-of-plane drift driven tests on frames with and without infill walls and openings, as well as out-of-plane bend test of masonry walls. Micromodels were rectified based on their behavior and damage states. As a result of the calibration process, it was found that micromodels were sensitive and insensitive to various parameters, regarding the model's behavior and computational stability. It was found that, even within the same material model, some parameters had more effects when attributed to concrete rather than on masonry. Generally, the in-plane behavior of infilled frames was found to be largely governed by the interface material model. The out-of-plane masonry wall simulations were governed by the tensile strength of both the interface and masonry material model. Yet, the out-of-plane drift driven test was governed by the concrete material properties.}, subject = {Verwundbarkeit}, language = {en} } @article{LondongBarthSoebke, author = {Londong, J{\"o}rg and Barth, Marcus and S{\"o}bke, Heinrich}, title = {Modeling and Simulation of Source Separation in Sanitation Systems for Reducing Emissions of Antimicrobial Resistances}, series = {Water}, volume = {2021}, journal = {Water}, number = {Volume 13, issue 23, article 3342}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/w13233342}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211202-45338}, pages = {1 -- 19}, abstract = {Antimicrobial resistance (AMR) is identified by the World Health Organization (WHO) as one of the top ten threats to public health worldwide. In addition to public health, AMR also poses a major threat to food security and economic development. Current sanitation systems contribute to the emergence and spread of AMR and lack effective AMR mitigation measures. This study assesses source separation of blackwater as a mitigation measure against AMR. A source-separation-modified combined sanitation system with separate collection of blackwater and graywater is conceptually described. Measures taken at the source, such as the separate collection and discharge of material flows, were not considered so far on a load balance basis, i.e., they have not yet been evaluated for their effectiveness. The sanitation system described is compared with a combined system and a separate system regarding AMR emissions by means of simulation. AMR is represented in the simulation model by one proxy parameter each for antibiotics (sulfamethoxa-zole), antibiotic-resistant bacteria (extended-spectrum beta-lactamase E. Coli), and antibiotic re-sistance genes (blaTEM). The simulation results suggest that the source-separation-based sanitation system reduces emissions of antibiotic-resistant bacteria and antibiotic resistance genes into the aquatic environment by more than six logarithm steps compared to combined systems. Sulfa-methoxazole emissions can be reduced by 75.5\% by keeping blackwater separate from graywater and treating it sufficiently. In summary, sanitation systems incorporating source separation are, to date, among the most effective means of preventing the emission of AMR into the aquatic envi-ronment.}, subject = {Abwasser}, language = {en} } @article{AlkamLahmer, author = {Alkam, Feras and Lahmer, Tom}, title = {A robust method of the status monitoring of catenary poles installed along high-speed electrified train tracks}, series = {Results in Engineering}, volume = {2021}, journal = {Results in Engineering}, number = {volume 12, article 100289}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.rineng.2021.100289}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211011-45212}, pages = {1 -- 8}, abstract = {Electric trains are considered one of the most eco-friendly and safest means of transportation. Catenary poles are used worldwide to support overhead power lines for electric trains. The performance of the catenary poles has an extensive influence on the integrity of the train systems and, consequently, the connected human services. It became a must nowadays to develop SHM systems that provide the instantaneous status of catenary poles in- service, making the decision-making processes to keep or repair the damaged poles more feasible. This study develops a data-driven, model-free approach for status monitoring of cantilever structures, focusing on pre-stressed, spun-cast ultrahigh-strength concrete catenary poles installed along high-speed train tracks. The pro-posed approach evaluates multiple damage features in an unfied damage index, which leads to straightforward interpretation and comparison of the output. Besides, it distinguishes between multiple damage scenarios of the poles, either the ones caused by material degradation of the concrete or by the cracks that can be propagated during the life span of the given structure. Moreover, using a logistic function to classify the integrity of structure avoids the expensive learning step in the existing damage detection approaches, namely, using the modern machine and deep learning methods. The findings of this study look very promising when applied to other types of cantilever structures, such as the poles that support the power transmission lines, antenna masts, chimneys, and wind turbines.}, subject = {Fahrleitung}, language = {en} } @article{AlsaadVoelker, author = {Alsaad, Hayder and V{\"o}lker, Conrad}, title = {Qualitative evaluation of the flow supplied by personalized ventilation using schlieren imaging and thermography}, series = {Building and Environment}, volume = {2020}, journal = {Building and Environment}, number = {Volume 167, article 106450}, publisher = {Elsevier}, address = {New York}, doi = {10.25643/bauhaus-universitaet.4511}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211008-45117}, pages = {11}, abstract = {Personalized ventilation (PV) is a mean of delivering conditioned outdoor air into the breathing zone of the occupants. This study aims to qualitatively investigate the personalized flows using two methods of visualization: (1) schlieren imaging using a large schlieren mirror and (2) thermography using an infrared camera. While the schlieren imaging was used to render the velocity and mass transport of the supplied flow, thermography was implemented to visualize the air temperature distribution induced by the PV. Both studies were conducted using a thermal manikin to simulate an occupant facing a PV outlet. As a reference, the flow supplied by an axial fan and a cased axial fan was visualized with the schlieren system as well and compared to the flow supplied by PV. Schlieren visualization results indicate that the steady, low-turbulence flow supplied by PV was able to penetrate the thermal convective boundary layer encasing the manikin's body, providing clean air for inhalation. Contrarily, the axial fan diffused the supplied air over a large target area with high turbulence intensity; it only disturbed the convective boundary layer rather than destroying it. The cased fan supplied a flow with a reduced target area which allowed supplying more air into the breathing zone compared to the fan. The results of thermography visualization showed that the supplied cool air from PV penetrated the corona-shaped thermal boundary layer. Furthermore, the supplied air cooled the surface temperature of the face, which indicates the large impact of PV on local thermal sensation and comfort.}, subject = {Bildverarbeitung}, language = {en} }