@article{JentschKulleBodeetal., author = {Jentsch, Mark F. and Kulle, Christoph and Bode, Tobias and Pauer, Toni and Osburg, Andrea and Namgyel, Karma and Euthra, Karma and Dukjey, Jamyang and Tenzin, Karma}, title = {Field study of the building physics properties of common building types in the Inner Himalayan valleys of Bhutan}, series = {Energy for Sustainable Development 38}, journal = {Energy for Sustainable Development 38}, doi = {10.25643/bauhaus-universitaet.3139}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170419-31393}, pages = {48 -- 66}, abstract = {Traditionally, buildings in the Inner Himalayan valleys of Bhutan were constructed from rammed earth in the western regions and quarry stone in the central and eastern regions. Whilst basic architectural design elements have been retained, the construction methods have however changed over recent decades alongside expectations for indoor thermal comfort. Nevertheless, despite the need for space heating, thermal building performance remains largely unknown. Furthermore, no dedicated climate data is available for building performance assessments. This paper establishes such climatological information for the capital Thimphu and presents an investigation of building physics properties of traditional and contemporary building types. In a one month field study 10 buildings were surveyed, looking at building air tightness, indoor climate, wall U-values and water absorption of typical wall construction materials. The findings highlight comparably high wall U-values of 1.0 to 1.5 W/m²K for both current and historic constructions. Furthermore, air tightness tests show that, due to poorly sealed joints between construction elements, windows and doors, many buildings have high infiltration rates, reaching up to 5 air changes per hour. However, the results also indicate an indoor climate moderating effect of more traditional earth construction techniques. Based on these survey findings basic improvements are being suggested.}, subject = {Luftdichtheit}, language = {en} } @phdthesis{MartinezSoto, author = {Martinez Soto, Aner}, title = {Analyse und Erweiterung von bestehenden Prognosemodellen zur Bestimmung des Endenergiebedarfs im Wohnungssektor}, doi = {10.25643/bauhaus-universitaet.3225}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170607-32251}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {291}, abstract = {Die wachsende Notwendigkeit zur Energieeinsparung hat in verschiedenen L{\"a}ndern zur Entwicklung von Prognosemodellen zur Bestimmung des Energiebedarfs im Wohnungssektor gef{\"u}hrt. Obwohl Prognosemodelle prinzipiell eine L{\"o}sung zur Bestimmung des Energiebedarfs und zur Beurteilung der Auswirkungen von zuk{\"u}nftigen Energieeinsparmaßnahmen darstellen, sind die bestehenden Modelle jedoch mit Unw{\"a}gbarkeiten in der Modellierung und M{\"a}ngeln bez{\"u}glich der verwendeten Daten und Methodik behaftet. In dieser Arbeit werden die {\"U}bertragbarkeit, Genauigkeit und stochastische Unsicherheit von zw{\"o}lf Prognosemodellen (MAED-2, FfE-Geb{\"a}udemodell, CDEM, REM, CREEM, ECCABS, REEPS, BREHOMES, LEAP, DECM, CHM, BSM) analysiert, wobei Deutschland als Fallbeispiel verwendet wird. Zur Verbesserung der {\"U}bertragbarkeit der bestehenden Modelle werden Anpassungen vorgeschlagen. Außerdem wird f{\"u}r jedes Modell eine Bestimmung der einflussreichsten Parameter auf den simulierten Endenergiebedarf mit Hilfe einer Sensitivit{\"a}tsanalyse vorgenommen. Es konnte gezeigt werden, dass Modelle mit einem hohen Detaillierungsgrad nicht zwangsl{\"a}ufig genauere Ergebnisse f{\"u}r den Endenergiebedarf garantieren. Dennoch wurde festgestellt, dass Modelle mit einem niedrigen Detaillierungsgrad Ergebnisse mit gr{\"o}ßeren Unsicherheiten liefern als Modelle mit einem h{\"o}heren Detaillierungsgrad. Es wurde weiterhin festgestellt, dass die einflussreichsten Parameter zur Bestimmung des Endenergiebedarfs im Wohnungssektor Innenraumtemperatur, Außentemperatur (Gradtagzahl), Bev{\"o}lkerungsentwicklung und Anzahl der Geb{\"a}ude/Wohnungen sind. Auf der Grundlage der Erkenntnisse zur Bewertung bestehender Modelle und der Bestimmung der einflussreichsten Parameter wurde ein optimiertes Prognosemodell (Transferable Residential Energy Model, TREM) entwickelt. Mit dessen Hilfe wurde die Entwicklung des Endenergiebedarfs im deutschen Wohnungssektor sowie in anderen L{\"a}ndern (Vereinigtes K{\"o}nigsreich und Chile) prognostiziert. Diese Ergebnisse wurden anschließend mit statistischen Daten verglichen. Das TREM-Modell bestimmt den Endenergiebedarf auf der Grundlage der wahrscheinlichsten Variationen der einflussreichsten Eingangsparameter mit Hilfe einer Monte-Carlo-Simulation. Im Gegensatz zu bestehenden Modellierungsans{\"a}tzen liefert das Modell damit auch einen Bereich mit Wahrscheinlichkeitsb{\"a}ndern f{\"u}r den zuk{\"u}nftigen Endenergiebedarf. Die Ergebnisse des TREM-Modells zeigen, dass das Modell genauere Ergebnisse liefern kann als derzeitige Modelle mit einem Mittelwert der prozentualen Differenz niedriger als 5\% und einem Korrelationskoeffizienten r h{\"o}her als 0,35 und dar{\"u}ber hinaus dazu geeignet ist, ohne Anpassungen eine Prognose der Entwicklung des zuk{\"u}nftigen Endenergiebedarfs im Wohnungssektor f{\"u}r unterschiedliche L{\"a}nder zu erstellen.}, subject = {Energieverbrauch}, language = {de} }