@article{HarirchianLahmerBuddhirajuetal., author = {Harirchian, Ehsan and Lahmer, Tom and Buddhiraju, Sreekanth and Mohammad, Kifaytullah and Mosavi, Amir}, title = {Earthquake Safety Assessment of Buildings through Rapid Visual Screening}, series = {Buildings}, volume = {2020}, journal = {Buildings}, number = {Volume 10, Issue 3}, publisher = {MDPI}, doi = {10.3390/buildings10030051}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200331-41153}, pages = {15}, abstract = {Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bing{\"o}l region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively.}, subject = {Maschinelles Lernen}, language = {en} } @article{HarirchianKumariJadhavetal., author = {Harirchian, Ehsan and Kumari, Vandana and Jadhav, Kirti and Rasulzade, Shahla and Lahmer, Tom and Raj Das, Rohan}, title = {A Synthesized Study Based on Machine Learning Approaches for Rapid Classifying Earthquake Damage Grades to RC Buildings}, series = {Applied Sciences}, volume = {2021}, journal = {Applied Sciences}, number = {Volume 11, issue 16, article 7540}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app11167540}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210818-44853}, pages = {1 -- 33}, abstract = {A vast number of existing buildings were constructed before the development and enforcement of seismic design codes, which run into the risk of being severely damaged under the action of seismic excitations. This poses not only a threat to the life of people but also affects the socio-economic stability in the affected area. Therefore, it is necessary to assess such buildings' present vulnerability to make an educated decision regarding risk mitigation by seismic strengthening techniques such as retrofitting. However, it is economically and timely manner not feasible to inspect, repair, and augment every old building on an urban scale. As a result, a reliable rapid screening methods, namely Rapid Visual Screening (RVS), have garnered increasing interest among researchers and decision-makers alike. In this study, the effectiveness of five different Machine Learning (ML) techniques in vulnerability prediction applications have been investigated. The damage data of four different earthquakes from Ecuador, Haiti, Nepal, and South Korea, have been utilized to train and test the developed models. Eight performance modifiers have been implemented as variables with a supervised ML. The investigations on this paper illustrate that the assessed vulnerability classes by ML techniques were very close to the actual damage levels observed in the buildings.}, subject = {Maschinelles Lernen}, language = {en} } @article{KumariHarirchianLahmeretal., author = {Kumari, Vandana and Harirchian, Ehsan and Lahmer, Tom and Rasulzade, Shahla}, title = {Evaluation of Machine Learning and Web-Based Process for Damage Score Estimation of Existing Buildings}, series = {Buildings}, volume = {2022}, journal = {Buildings}, number = {Volume 12, issue 5, article 578}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/buildings12050578}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220509-46387}, pages = {1 -- 23}, abstract = {The seismic vulnerability assessment of existing reinforced concrete (RC) buildings is a significant source of disaster mitigation plans and rescue services. Different countries evolved various Rapid Visual Screening (RVS) techniques and methodologies to deal with the devastating consequences of earthquakes on the structural characteristics of buildings and human casualties. Artificial intelligence (AI) methods, such as machine learning (ML) algorithm-based methods, are increasingly used in various scientific and technical applications. The investigation toward using these techniques in civil engineering applications has shown encouraging results and reduced human intervention, including uncertainties and biased judgment. In this study, several known non-parametric algorithms are investigated toward RVS using a dataset employing different earthquakes. Moreover, the methodology encourages the possibility of examining the buildings' vulnerability based on the factors related to the buildings' importance and exposure. In addition, a web-based application built on Django is introduced. The interface is designed with the idea to ease the seismic vulnerability investigation in real-time. The concept was validated using two case studies, and the achieved results showed the proposed approach's potential efficiency}, subject = {Maschinelles Lernen}, language = {en} }