@article{KrausKlausWittor, author = {Kraus, Matthias and Klaus, Martin and Wittor, Bj{\"o}rn}, title = {Experimental Analyses on the Resistance of Tapped Blind Holes}, series = {ce/papers}, volume = {2021}, journal = {ce/papers}, number = {Volume 4, issue 2-4}, publisher = {Ernst \& Sohn, a Wiley brand}, address = {Berlin}, doi = {10.1002/cepa.1273}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45553}, pages = {141 -- 147}, abstract = {Bolted connections are commonly used in steel construction. The load-bearing behavior of bolt fittings has extensively been studied in various research activities and the bearing capacity of bolted connections can be assessed well by standard regulations for practical applications. With regard to tensile loading, the nut does not have strong influence on resistances, since the failure occurs in the bolts due to higher material strengths of the nuts. In some applications, so-called "blind holes" are used to connect plated components. In a manner of speaking, the nut is replaced by the "outer" plate with a prefabricated hole and thread, in which the bolt can be screwed and tightened. In such connections, the limit load capacity cannot solely be assessed by the bolt resistance, since the threaded hole in the base material has strong influence on the structural behavior. In this context, the available screw-in depth of the blind hole is of fundamental importance. The German National Annex of EN 1993-1-8 provides information on a necessary depth in order to transfer the full tensile capacity of the bolt. However, some connections do not allow to fabricate such depths. In these cases, the capacity of the connection is unclear and not specified. In this paper, first experiments on corresponding connections with different screw-in depths are presented and compared to limit load capacities according to the standard.}, subject = {Gewinde}, language = {en} } @article{KrausCrişanWittor, author = {Kraus, Matthias and Cri{\c{s}}an, Nicolae-Andrei and Wittor, Bj{\"o}rn}, title = {Stability Study of Cantilever-Beams - Numerical Analysis and Analytical Calculation (LTB)}, series = {ce/papers}, volume = {2021}, journal = {ce/papers}, number = {Volume 4, issue 2-4}, publisher = {Ernst \& Sohn, a Wiley brand}, address = {Berlin}, doi = {10.1002/cepa.1539}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220112-45637}, pages = {2199 -- 2206}, abstract = {According to Eurocode, the computation of bending strength for steel cantilever beams is a straightforward process. The approach is based on an Ayrton-Perry formula adaptation of buckling curves for steel members in compression, which involves the computation of an elastic critical buckling load for considering the instability. NCCI documents offer a simplified formula to determine the critical bending moment for cantilevers beams with symmetric cross-section. Besides the NCCI recommendations, other approaches, e.g. research literature or Finite-Element-Analysis, may be employed to determine critical buckling loads. However, in certain cases they render different results. Present paper summarizes and compares the abovementioned analytical and numerical approaches for determining critical loads and it exemplarily analyses corresponding cantilever beam capacities using numerical approaches based on plastic zones theory (GMNIA).}, subject = {Tr{\"a}ger}, language = {en} }