@article{ArtusKoch, author = {Artus, Mathias and Koch, Christian}, title = {Object-Oriented Damage Information Modeling Concepts and Implementation for Bridge Inspection}, series = {Journal of Computing in Civil Engineering}, volume = {2022}, journal = {Journal of Computing in Civil Engineering}, number = {Volume 36, issue 6}, doi = {10.1061/(ASCE)CP.1943-5487.0001030}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220826-47087}, pages = {1 -- 21}, abstract = {Bridges are designed to last for more than 50 years and consume up to 50\% of their life-cycle costs during their operation phase. Several inspections and assessment actions are executed during this period. Bridge and damage information must be gathered, digitized, and exchanged between different stakeholders. Currently, the inspection and assessment practices rely on paper-based data collection and exchange, which is time-consuming and error-prone, and leads to loss of information. Storing and exchanging damage and building information in a digital format may lower costs and errors during inspection and assessment and support future needs, for example, immediate simulations regarding performance assessment, automated maintenance planning, and mixed reality inspections. This study focused on the concept for modeling damage information to support bridge reviews and structural analysis. Starting from the definition of multiple use cases and related requirements, the data model for damage information is defined independently from the subsequent implementation. In the next step, the implementation via an established standard is explained. Functional tests aim to identify problems in the concept and implementation. To show the capability of the final model, two example use cases are illustrated: the inspection review of the entire bridge and a finite-element analysis of a single component. Main results are the definition of necessary damage data, an object-oriented damage model, which supports multiple use cases, and the implementation of the model in a standard. Furthermore, the tests have shown that the standard is suitable to deliver damage information; however, several software programs lack proper implementation of the standard.}, subject = {Building Information Modeling}, language = {en} } @article{ArtusKoch, author = {Artus, Mathias and Koch, Christian}, title = {State of the art in damage information modeling for RC bridges - A literature review}, series = {Advanced Engineering Informatics}, volume = {2020}, journal = {Advanced Engineering Informatics}, number = {volume 46, article 101171}, publisher = {Elsevier Science}, address = {Amsterdam}, doi = {10.1016/j.aei.2020.101171}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220506-46390}, pages = {1 -- 16}, abstract = {In Germany, bridges have an average age of 40 years. A bridge consumes between 0.4\% and 2\% of its construction cost per year over its entire life cycle. This means that up to 80\% of the construction cost are additionally needed for operation, inspection, maintenance, and destruction. Current practices rely either on paperbased inspections or on abstract specialist software. Every application in the inspection and maintenance sector uses its own data model for structures, inspections, defects, and maintenance. Due to this, data and properties have to be transferred manually, otherwise a converter is necessary for every data exchange between two applications. To overcome this issue, an adequate model standard for inspections, damage, and maintenance is necessary. Modern 3D models may serve as a single source of truth, which has been suggested in the Building Information Modeling (BIM) concept. Further, these models offer a clear visualization of the built infrastructure, and improve not only the planning and construction phases, but also the operation phase of construction projects. BIM is established mostly in the Architecture, Engineering, and Construction (AEC) sector to plan and construct new buildings. Currently, BIM does not cover the whole life cycle of a building, especially not inspection and maintenance. Creating damage models needs the building model first, because a defect is dependent on the building component, its properties and material. Hence, a building information model is necessary to obtain meaningful conclusions from damage information. This paper analyzes the requirements, which arise from practice, and the research that has been done in modeling damage and related information for bridges. With a look at damage categories and use cases related to inspection and maintenance, scientific literature is discussed and synthesized. Finally, research gaps and needs are identified and discussed.}, subject = {Building Information Modeling}, language = {de} } @article{ArtusAlabassyKoch, author = {Artus, Mathias and Alabassy, Mohamed Said Helmy and Koch, Christian}, title = {A BIM Based Framework for Damage Segmentation, Modeling, and Visualization Using IFC}, series = {Applied Sciences}, volume = {2022}, journal = {Applied Sciences}, number = {volume 12, issue 6, article 2772}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app12062772}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220314-46059}, pages = {1 -- 24}, abstract = {Paper-based data acquisition and manual transfer between incompatible software or data formats during inspections of bridges, as done currently, are time-consuming, error-prone, cumbersome, and lead to information loss. A fully digitized workflow using open data formats would reduce data loss, efforts, and the costs of future inspections. On the one hand, existing studies proposed methods to automatize data acquisition and visualization for inspections. These studies lack an open standard to make the gathered data available for other processes. On the other hand, several studies discuss data structures for exchanging damage information among different stakeholders. However, those studies do not cover the process of automatic data acquisition and transfer. This study focuses on a framework that incorporates automatic damage data acquisition, transfer, and a damage information model for data exchange. This enables inspectors to use damage data for subsequent analyses and simulations. The proposed framework shows the potentials for a comprehensive damage information model and related (semi-)automatic data acquisition and processing.}, subject = {Building Information Modeling}, language = {en} } @article{KavrakovKareemMorgenthal, author = {Kavrakov, Igor and Kareem, Ahsan and Morgenthal, Guido}, title = {Comparison Metrics for Time-histories: Application to Bridge Aerodynamics}, doi = {10.25643/bauhaus-universitaet.4186}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200625-41863}, pages = {28}, abstract = {Wind effects can be critical for the design of lifelines such as long-span bridges. The existence of a significant number of aerodynamic force models, used to assess the performance of bridges, poses an important question regarding their comparison and validation. This study utilizes a unified set of metrics for a quantitative comparison of time-histories in bridge aerodynamics with a host of characteristics. Accordingly, nine comparison metrics are included to quantify the discrepancies in local and global signal features such as phase, time-varying frequency and magnitude content, probability density, nonstationarity and nonlinearity. Among these, seven metrics available in the literature are introduced after recasting them for time-histories associated with bridge aerodynamics. Two additional metrics are established to overcome the shortcomings of the existing metrics. The performance of the comparison metrics is first assessed using generic signals with prescribed signal features. Subsequently, the metrics are applied to a practical example from bridge aerodynamics to quantify the discrepancies in the aerodynamic forces and response based on numerical and semi-analytical aerodynamic models. In this context, it is demonstrated how a discussion based on the set of comparison metrics presented here can aid a model evaluation by offering deeper insight. The outcome of the study is intended to provide a framework for quantitative comparison and validation of aerodynamic models based on the underlying physics of fluid-structure interaction. Immediate further applications are expected for the comparison of time-histories that are simulated by data-driven approaches.}, subject = {Ingenieurwissenschaften}, language = {en} } @phdthesis{Kavrakov, author = {Kavrakov, Igor}, title = {Synergistic Framework for Analysis and Model Assessment in Bridge Aerodynamics and Aeroelasticity}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, isbn = {978-3-95773-284-2}, doi = {10.25643/bauhaus-universitaet.4109}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200316-41099}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {314}, abstract = {Wind-induced vibrations often represent a major design criterion for long-span bridges. This work deals with the assessment and development of models for aerodynamic and aeroelastic analyses of long-span bridges. Computational Fluid Dynamics (CFD) and semi-analytical aerodynamic models are employed to compute the bridge response due to both turbulent and laminar free-stream. For the assessment of these models, a comparative methodology is developed that consists of two steps, a qualitative and a quantitative one. The first, qualitative, step involves an extension of an existing approach based on Category Theory and its application to the field of bridge aerodynamics. Initially, the approach is extended to consider model comparability and completeness. Then, the complexity of the CFD and twelve semi-analytical models are evaluated based on their mathematical constructions, yielding a diagrammatic representation of model quality. In the second, quantitative, step of the comparative methodology, the discrepancy of a system response quantity for time-dependent aerodynamic models is quantified using comparison metrics for time-histories. Nine metrics are established on a uniform basis to quantify the discrepancies in local and global signal features that are of interest in bridge aerodynamics. These signal features involve quantities such as phase, time-varying frequency and magnitude content, probability density, non-stationarity, and nonlinearity. The two-dimensional (2D) Vortex Particle Method is used for the discretization of the Navier-Stokes equations including a Pseudo-three dimensional (Pseudo-3D) extension within an existing CFD solver. The Pseudo-3D Vortex Method considers the 3D structural behavior for aeroelastic analyses by positioning 2D fluid strips along a line-like structure. A novel turbulent Pseudo-3D Vortex Method is developed by combining the laminar Pseudo-3D VPM and a previously developed 2D method for the generation of free-stream turbulence. Using analytical derivations, it is shown that the fluid velocity correlation is maintained between the CFD strips. Furthermore, a new method is presented for the determination of the complex aerodynamic admittance under deterministic sinusoidal gusts using the Vortex Particle Method. The sinusoidal gusts are simulated by modeling the wakes of flapping airfoils in the CFD domain with inflow vortex particles. Positioning a section downstream yields sinusoidal forces that are used for determining all six components of the complex aerodynamic admittance. A closed-form analytical relation is derived, based on an existing analytical model. With this relation, the inflow particles' strength can be related with the target gust amplitudes a priori. The developed methodologies are combined in a synergistic framework, which is applied to both fundamental examples and practical case studies. Where possible, the results are verified and validated. The outcome of this work is intended to shed some light on the complex wind-bridge interaction and suggest appropriate modeling strategies for an enhanced design.}, subject = {Br{\"u}cke}, language = {en} } @article{KavrakovLegatiukGuerlebecketal., author = {Kavrakov, Igor and Legatiuk, Dmitrii and G{\"u}rlebeck, Klaus and Morgenthal, Guido}, title = {A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks}, series = {Royal Society Open Science}, journal = {Royal Society Open Science}, number = {Volume 6, Issue 3}, doi = {/10.1098/rsos.181848}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190314-38656}, pages = {20}, abstract = {Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary. This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterisation is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications.}, subject = {Br{\"u}cke}, language = {en} } @phdthesis{Abbas, author = {Abbas, Tajammal}, title = {Assessment of Numerical Prediction Models for Aeroelastic Instabilities of Bridges}, publisher = {Jonas Verlag}, address = {Weimar}, doi = {10.25643/bauhaus-universitaet.2716}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180515-27161}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {275}, abstract = {The phenomenon of aerodynamic instability caused by the wind is usually a major design criterion for long-span cable-supported bridges. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary, therefore, requires accurate and robust models. The complexity and uncertainty of models for such engineering problems demand strategies for model assessment. This study is an attempt to use the concepts of sensitivity and uncertainty analyses to assess the aeroelastic instability prediction models for long-span bridges. The state-of-the-art theory concerning the determination of the flutter stability limit is presented. Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of structural and aerodynamic models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the coupled model.}, subject = {Br{\"u}cke}, language = {en} } @misc{Rahn2007, type = {Master Thesis}, author = {Rahn, Andre}, title = {"Monitoring an Br{\"u}ckenkappen mit Tellerankern"}, doi = {10.25643/bauhaus-universitaet.1274}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20080307-13431}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2007}, abstract = {Br{\"u}ckenkappen gew{\"a}hrleisten die Trennung der Verkehrsr{\"a}ume Fahrbahn und Gehweg und m{\"u}ssen aufgrund ihrer Anordnung im Querschnitt Schutz- und Leiteinrichtungen aufnehmen. Zur Verankerung der Br{\"u}ckenkappen am {\"U}berbau werden je nach Erfordernissen Anschlussbewehrung und / oder Telleranker angeordnet. Die vorliegende Arbeit analysiert grundlegende M{\"o}glichkeiten zur messtechnischen Untersuchung von Br{\"u}ckenkappen bei Anwendung von Tellerankern. Dabei werden die theoretische und konstruktiven Grundlagen der Kappenausbildung betrachtet. Außerdem werden die Zusammenh{\"a}nge zwischen den auftretenden Einwirkungen und deren Auswirkungen auf Br{\"u}ckenkappen betrachtet. Darauf aufbauend werden Kennwerte zur Ermittlung der Beanspruchung in den Kappen und den Tellerankern abgeleitet und hinsichtlich der messtechnischen Erfassung und Auswertung der Messdaten analysiert.}, subject = {Br{\"u}cke}, language = {de} } @inproceedings{Schroeder1997, author = {Schroeder, P.}, title = {Ein stochastisches Modell zur Berechnung von B{\"o}eneinwirkungen auf Br{\"u}ckenbauwerke}, doi = {10.25643/bauhaus-universitaet.440}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4409}, year = {1997}, abstract = {Zur Berechnung der B{\"o}eneinwirkungen auf ein Br{\"u}ckenbauwerk wird ein stochastisches Modell vorgestellt. Die Windkraft aus der B{\"o}enbelastung wird dabei als systemunabh{\"a}ngige Luftkraft betrachtet welche in mathematischer Hinsicht dadurch gekennzeichnet ist, daß die aeroelastischen Bewegungsdifferentialgleichungen inhomogener Natur sind und der Bewegungsablauf den Charakter einer erzwungenen abklingenden Schwingung hat. Ausgehend von den nicht linearen partiellen Differentialgleichungen f{\"u}r Verschiebung und Torsion wird mittels der Galerkin Prozedur ein System von totalen Differentialgleichungen abgeleitet. Die {\"a}ußeren Luftkr{\"a}fte werden als gefilterter Poissonprozess von Dirac Impulsen dargestellt. Zur Berechnung der statistischen Momente des Differentialgleichungssystem wird die It{\^o}'sche Differentialformel erweitert und in ein System von algebraischen nicht linearen Gleichungen transformiert. Diese dienen zur Berechnung des Momentenverlaufs f{\"u}r den station{\"a}ren Anteil des stochastischen Prozesses. Der Abschluß des so erhaltenen nicht linearen Gleichungssystems erfolgt {\"u}ber die Methode der Kumulantenabschlußtechnik.}, subject = {Br{\"u}cke}, language = {de} } @phdthesis{Bayer1999, author = {Bayer, Veit}, title = {Zur Zuverl{\"a}ssigkeitsbeurteilung von Baukonstruktionen unter dynamischen Einwirkungen}, doi = {10.25643/bauhaus-universitaet.19}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040205-215}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {1999}, abstract = {Die Arbeit befaßt sich mit varianzmindernden Verfahren zur Monte Carlo Simulation von stochastischen Prozessen, zum Zweck der Zuverl{\"a}ssigkeitsbeurteilung von Baukonstruktionen mit nichtlinearem Systemverhalten. Kap. 2 ist eine Literaturstudie zu varianzmindernden Monte Carlo Methoden. In Kap. 3 wird die Spektrale Darstellung eines station{\"a}ren, skalaren Gauß - Prozesses hergeleitet. Auf dieser Grundlage werden verschiedene Simulationsmodelle diskutiert. Das in Kap. 4 entwickelte varianzmindernde Simulationsverfahren basiert auf der Spektralen Darstellung. Nach einer ersten Pilotsimulation werden die Frequenzen f{\"u}r die Einf{\"u}hrung zuf{\"a}lliger Amplituden bestimmt und deren Parameter angepaßt. Der zweite Lauf erfolgt mit diesen Parametern nach dem Prinzip des Importance Sampling. Das Verfahren wird in Kap. 5 f{\"u}r eine Br{\"u}cke unter Erdbebenbelastung angewendet. Die Br{\"u}cke ist mit sog. Hysteretic Devices zur Energiedissipation ausger{\"u}stet. Es werden einerseits die Genauigkeit und Effizienz des Simulationsverfahrens, andererseits die Leistungsf{\"a}higkeit der Hysteretic Devices zur Erdbebenert{\"u}chtigung von Bauwerken demonstriert.}, subject = {Baukonstruktion}, language = {de} }