@misc{Alabassy, type = {Master Thesis}, author = {Alabassy, Mohamed Said Helmy}, title = {Automated Approach for Building Information Modelling of Crack Damages via Image Segmentation and Image-based 3D Reconstruction}, doi = {10.25643/bauhaus-universitaet.6416}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230818-64162}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {101}, abstract = {As machine vision-based inspection methods in the field of Structural Health Monitoring (SHM) continue to advance, the need for integrating resulting inspection and maintenance data into a centralised building information model for structures notably grows. Consequently, the modelling of found damages based on those images in a streamlined automated manner becomes increasingly important, not just for saving time and money spent on updating the model to include the latest information gathered through each inspection, but also to easily visualise them, provide all stakeholders involved with a comprehensive digital representation containing all the necessary information to fully understand the structure's current condition, keep track of any progressing deterioration, estimate the reduced load bearing capacity of the damaged element in the model or simulate the propagation of cracks to make well-informed decisions interactively and facilitate maintenance actions that optimally extend the service life of the structure. Though significant progress has been recently made in information modelling of damages, the current devised methods for the geometrical modelling approach are cumbersome and time consuming to implement in a full-scale model. For crack damages, an approach for a feasible automated image-based modelling is proposed utilising neural networks, classical computer vision and computational geometry techniques with the aim of creating valid shapes to be introduced into the information model, including related semantic properties and attributes from inspection data (e.g., width, depth, length, date, etc.). The creation of such models opens the door for further possible uses ranging from more accurate structural analysis possibilities to simulation of damage propagation in model elements, estimating deterioration rates and allows for better documentation, data sharing, and realistic visualisation of damages in a 3D model.}, subject = {Building Information Modeling}, language = {en} } @article{ArtusKoch, author = {Artus, Mathias and Koch, Christian}, title = {Object-Oriented Damage Information Modeling Concepts and Implementation for Bridge Inspection}, series = {Journal of Computing in Civil Engineering}, volume = {2022}, journal = {Journal of Computing in Civil Engineering}, number = {Volume 36, issue 6}, doi = {10.1061/(ASCE)CP.1943-5487.0001030}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220826-47087}, pages = {1 -- 21}, abstract = {Bridges are designed to last for more than 50 years and consume up to 50\% of their life-cycle costs during their operation phase. Several inspections and assessment actions are executed during this period. Bridge and damage information must be gathered, digitized, and exchanged between different stakeholders. Currently, the inspection and assessment practices rely on paper-based data collection and exchange, which is time-consuming and error-prone, and leads to loss of information. Storing and exchanging damage and building information in a digital format may lower costs and errors during inspection and assessment and support future needs, for example, immediate simulations regarding performance assessment, automated maintenance planning, and mixed reality inspections. This study focused on the concept for modeling damage information to support bridge reviews and structural analysis. Starting from the definition of multiple use cases and related requirements, the data model for damage information is defined independently from the subsequent implementation. In the next step, the implementation via an established standard is explained. Functional tests aim to identify problems in the concept and implementation. To show the capability of the final model, two example use cases are illustrated: the inspection review of the entire bridge and a finite-element analysis of a single component. Main results are the definition of necessary damage data, an object-oriented damage model, which supports multiple use cases, and the implementation of the model in a standard. Furthermore, the tests have shown that the standard is suitable to deliver damage information; however, several software programs lack proper implementation of the standard.}, subject = {Building Information Modeling}, language = {en} } @article{ArtusKoch, author = {Artus, Mathias and Koch, Christian}, title = {State of the art in damage information modeling for RC bridges - A literature review}, series = {Advanced Engineering Informatics}, volume = {2020}, journal = {Advanced Engineering Informatics}, number = {volume 46, article 101171}, publisher = {Elsevier Science}, address = {Amsterdam}, doi = {10.1016/j.aei.2020.101171}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220506-46390}, pages = {1 -- 16}, abstract = {In Germany, bridges have an average age of 40 years. A bridge consumes between 0.4\% and 2\% of its construction cost per year over its entire life cycle. This means that up to 80\% of the construction cost are additionally needed for operation, inspection, maintenance, and destruction. Current practices rely either on paperbased inspections or on abstract specialist software. Every application in the inspection and maintenance sector uses its own data model for structures, inspections, defects, and maintenance. Due to this, data and properties have to be transferred manually, otherwise a converter is necessary for every data exchange between two applications. To overcome this issue, an adequate model standard for inspections, damage, and maintenance is necessary. Modern 3D models may serve as a single source of truth, which has been suggested in the Building Information Modeling (BIM) concept. Further, these models offer a clear visualization of the built infrastructure, and improve not only the planning and construction phases, but also the operation phase of construction projects. BIM is established mostly in the Architecture, Engineering, and Construction (AEC) sector to plan and construct new buildings. Currently, BIM does not cover the whole life cycle of a building, especially not inspection and maintenance. Creating damage models needs the building model first, because a defect is dependent on the building component, its properties and material. Hence, a building information model is necessary to obtain meaningful conclusions from damage information. This paper analyzes the requirements, which arise from practice, and the research that has been done in modeling damage and related information for bridges. With a look at damage categories and use cases related to inspection and maintenance, scientific literature is discussed and synthesized. Finally, research gaps and needs are identified and discussed.}, subject = {Building Information Modeling}, language = {de} } @article{ArtusAlabassyKoch, author = {Artus, Mathias and Alabassy, Mohamed Said Helmy and Koch, Christian}, title = {A BIM Based Framework for Damage Segmentation, Modeling, and Visualization Using IFC}, series = {Applied Sciences}, volume = {2022}, journal = {Applied Sciences}, number = {volume 12, issue 6, article 2772}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app12062772}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220314-46059}, pages = {1 -- 24}, abstract = {Paper-based data acquisition and manual transfer between incompatible software or data formats during inspections of bridges, as done currently, are time-consuming, error-prone, cumbersome, and lead to information loss. A fully digitized workflow using open data formats would reduce data loss, efforts, and the costs of future inspections. On the one hand, existing studies proposed methods to automatize data acquisition and visualization for inspections. These studies lack an open standard to make the gathered data available for other processes. On the other hand, several studies discuss data structures for exchanging damage information among different stakeholders. However, those studies do not cover the process of automatic data acquisition and transfer. This study focuses on a framework that incorporates automatic damage data acquisition, transfer, and a damage information model for data exchange. This enables inspectors to use damage data for subsequent analyses and simulations. The proposed framework shows the potentials for a comprehensive damage information model and related (semi-)automatic data acquisition and processing.}, subject = {Building Information Modeling}, language = {en} }