@article{SaadatfarKhosraviHassannatajJoloudarietal., author = {Saadatfar, Hamid and Khosravi, Samiyeh and Hassannataj Joloudari, Javad and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {A New K-Nearest Neighbors Classifier for Big Data Based on Efficient Data Pruning}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {volume 8, issue 2, article 286}, publisher = {MDPI}, doi = {10.3390/math8020286}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200225-40996}, pages = {12}, abstract = {The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods.}, subject = {Maschinelles Lernen}, language = {en} } @article{HassannatajJoloudariHassannatajJoloudariSaadatfaretal., author = {Hassannataj Joloudari, Javad and Hassannataj Joloudari, Edris and Saadatfar, Hamid and GhasemiGol, Mohammad and Razavi, Seyyed Mohammad and Mosavi, Amir and Nabipour, Narjes and Shamshirband, Shahaboddin and Nadai, Laszlo}, title = {Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model}, series = {International Journal of Environmental Research and Public Health, IJERPH}, volume = {2020}, journal = {International Journal of Environmental Research and Public Health, IJERPH}, number = {Volume 17, Issue 3, 731}, publisher = {MDPI}, doi = {10.3390/ijerph17030731}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40819}, pages = {24}, abstract = {Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models.}, subject = {Maschinelles Lernen}, language = {en} } @article{ShamshirbandJoloudariGhasemiGoletal., author = {Shamshirband, Shahaboddin and Joloudari, Javad Hassannataj and GhasemiGol, Mohammad and Saadatfar, Hamid and Mosavi, Amir and Nabipour, Narjes}, title = {FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {Volume 8, Issue 1, article 28}, publisher = {MDPI}, doi = {10.3390/math8010028}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200107-40541}, pages = {24}, abstract = {Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods.}, subject = {Vernetzung}, language = {en} }