@article{HarirchianLahmerBuddhirajuetal., author = {Harirchian, Ehsan and Lahmer, Tom and Buddhiraju, Sreekanth and Mohammad, Kifaytullah and Mosavi, Amir}, title = {Earthquake Safety Assessment of Buildings through Rapid Visual Screening}, series = {Buildings}, volume = {2020}, journal = {Buildings}, number = {Volume 10, Issue 3}, publisher = {MDPI}, doi = {10.3390/buildings10030051}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200331-41153}, pages = {15}, abstract = {Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bing{\"o}l region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively.}, subject = {Maschinelles Lernen}, language = {en} }