@inproceedings{AhmadZabelKoenke, author = {Ahmad, Sofyan and Zabel, Volkmar and K{\"o}nke, Carsten}, title = {WAVELET-BASED INDICATORS FOR RESPONSE SURFACE MODELS IN DAMAGE IDENTIFICATION OF STRUCTURES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2758}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170306-27588}, pages = {14}, abstract = {In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.}, subject = {Angewandte Mathematik}, language = {en} } @article{BrehmZabelBucher, author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian}, title = {An automatic mode pairing strategy using an enhanced modal assurance citerion based on modal strain energies}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, doi = {10.1016/j.jsv.2010.07.006}, pages = {5375 -- 5392}, abstract = {In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion.}, subject = {Angewandte Mathematik}, language = {en} } @article{BrehmZabelBucher, author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian}, title = {Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study}, series = {Mechanical Systems and Signal Processing}, journal = {Mechanical Systems and Signal Processing}, abstract = {Optimal reference sensor positions for applications in model updating using output-only vibration test data based on random excitation: Part 2 - improved search strategy and experimental case study}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{BrehmZabelBucheretal., author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian and Ribeiro, D.}, title = {AN AUTOMATIC MODE SELECTION STRATEGY FOR MODEL UPDATING USING THE MODAL ASSURANCE CRITERION AND MODAL STRAIN ENERGIES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2833}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28330}, pages = {18}, abstract = {In the context of finite element model updating using vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the order of natural frequencies and mode shapes is important. As only limited spatial information is available and noise is present in the measurements, the automatic selection of the most likely numerical mode shape corresponding to a measured mode shape is a difficult task. The most common criterion to indicate corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases. In this paper, the pure mathematical modal assurance criterion will be enhanced by additional physical information of the numerical model in terms of modal strain energies. A numerical example and a benchmark study with real measured data are presented to show the advantages of the enhanced energy based criterion in comparison to the traditional modal assurance criterion.}, subject = {Angewandte Informatik}, language = {en} } @article{KeitelKarakiLahmeretal., author = {Keitel, Holger and Karaki, Ghada and Lahmer, Tom and Nikulla, Susanne and Zabel, Volkmar}, title = {Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis}, series = {Engineering structures}, journal = {Engineering structures}, pages = {3726 -- 3736}, abstract = {Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis}, subject = {Angewandte Mathematik}, language = {en} } @article{LuuMartinezRodrigoZabeletal., author = {Luu, M. and Martinez-Rodrigo, M.D. and Zabel, Volkmar and K{\"o}nke, Carsten}, title = {H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, pages = {2421 -- 2442}, abstract = {H∞ optimization of fluid viscous dampers for reducing vibrations of high-speed railway bridges}, subject = {Angewandte Mathematik}, language = {en} } @article{Zabel, author = {Zabel, Volkmar}, title = {An application of discrete wavelet analysis and connection coefficients to parametric system identification}, series = {Structural Health Monitoring}, journal = {Structural Health Monitoring}, pages = {5 -- 18}, abstract = {An application of discrete wavelet analysis and connection coefficients to parametric system identification}, subject = {Angewandte Mathematik}, language = {en} } @article{ZabelBrehm, author = {Zabel, Volkmar and Brehm, Maik}, title = {Das dynamische Verhalten von Eisenbahnbr{\"u}cken mit kurzer Spannweite - numerische und experimentelle Untersuchungen}, series = {Bauingenieur, D-A-CH-Mitteilungsblatt}, journal = {Bauingenieur, D-A-CH-Mitteilungsblatt}, abstract = {Das dynamische Verhalten von Eisenbahnbr{\"u}cken mit kurzer Spannweite - numerische und experimentelle Untersuchungen}, subject = {Angewandte Mathematik}, language = {de} }