@article{KreskowskiRendleFroehlich, author = {Kreskowski, Adrian and Rendle, Gareth and Fr{\"o}hlich, Bernd}, title = {Efficient Direct Isosurface Rasterization of Scalar Volumes}, series = {Computer Graphics Forum}, volume = {2022}, journal = {Computer Graphics Forum}, number = {Volume 4, Issue 7}, publisher = {Wiley Blackwell}, address = {Oxford}, doi = {10.1111/cgf.14670}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230525-63835}, pages = {215 -- 226}, abstract = {In this paper we propose a novel and efficient rasterization-based approach for direct rendering of isosurfaces. Our method exploits the capabilities of task and mesh shader pipelines to identify subvolumes containing potentially visible isosurface geometry, and to efficiently extract primitives which are consumed on the fly by the rasterizer. As a result, our approach requires little preprocessing and negligible additional memory. Direct isosurface rasterization is competitive in terms of rendering performance when compared with ray-marching-based approaches, and significantly outperforms them for increasing resolution in most situations. Since our approach is entirely rasterization based, it affords straightforward integration into existing rendering pipelines, while allowing the use of modern graphics hardware features, such as multi-view stereo for efficient rendering of stereoscopic image pairs for geometry-bound applications. Direct isosurface rasterization is suitable for applications where isosurface geometry is highly variable, such as interactive analysis scenarios for static and dynamic data sets that require frequent isovalue adjustment.}, subject = {Rendering}, language = {en} } @phdthesis{Schollmeyer, author = {Schollmeyer, Andre}, title = {Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations}, doi = {10.25643/bauhaus-universitaet.3823}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20181120-38234}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {143}, abstract = {Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Fl{\"a}chen, in den meisten F{\"a}llen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Pr{\"a}sentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung ben{\"o}tigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure ben{\"o}tigen eine verst{\"a}ndliche Visualisierung der Simulationsergebnisse, w{\"a}hrend eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschr{\"a}nkten Hardwareunterst{\"u}tzung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue F{\"a}higkeiten aktueller Grafikkarten aus, um den Stand der Technik bez{\"u}glich Qualit{\"a}t, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufw{\"a}ndige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen erm{\"o}glichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Fl{\"a}chen und einen interaktiven Ray-Casting-Algorithmus f{\"u}r die Isofl{\"a}chenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz f{\"u}r illustrative und verst{\"a}ndliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation f{\"u}r die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ans{\"a}tze basieren auf rasterisierter Geometrie und sind somit ebenfalls f{\"u}r normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realit{\"a}t darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datens{\"a}tzen durchgef{\"u}hrt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualit{\"a}t m{\"o}glich ist. Die Einf{\"u}hrung programmierbarer Transparenz erm{\"o}glicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken f{\"u}r die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verst{\"a}ndliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare f{\"u}r die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.}, subject = {Rendering}, language = {en} }