@article{BucherSchorling1997, author = {Bucher, Christian and Schorling, York}, title = {SLang - the Structural Language : Solving Nonlinear and Stochastic Problems in Structural Mechanics}, doi = {10.25643/bauhaus-universitaet.495}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4957}, year = {1997}, abstract = {Recent developments in structural mechanics indicate an increasing need of numerical methods to deal with stochasticity. This process started with the modeling of loading uncertainties. More recently, also system uncertainty, such as physical or geometrical imperfections are modeled in probabilistic terms. Clearly, this task requires close connenction of structural modeling with probabilistic modeling. Nonlinear effects are essential for a realistic description of the structural behavior. Since modern structural analysis relies quite heavily on the Finite Element Method, it seems to be quite reasonable to base stochastic structural analysis on this method. Commercially available software packages can cover deterministic structural analysis in a very wide range. However, the applicability of these packages to stochastic problems is rather limited. On the other hand, there is a number of highly specialized programs for probabilistic or reliability problems which can be used only in connection with rather simplistic structural models. In principle, there is the possibility to combine both kinds of software in order to achieve the goal. The major difficulty which then arises in practical computation is to define the most suitable way of transferring data between the programs. In order to circumvent these problems, the software package SLang (Structural Language) has been developed. SLang is a command interpreter which acts on a set of relatively complex commands. Each command takes input from and gives output to simple data structures (data objects), such as vectors and matrices. All commands communicate via these data objects which are stored in memory or on disk. The paper will show applications to structural engineering problems, in particular failure analysis of frames and shell structures with random loads and random imperfections. Both geometrical and physical nonlinearities are taken into account.}, subject = {Baustatik}, language = {en} } @inproceedings{RaueMarxWeitzmann1997, author = {Raue, Erich and Marx, Steffen and Weitzmann, R{\"u}diger}, title = {Beitrag zur Anwendung der nichtlinearen Optimierung bei der geometrisch und physikalisch nichtlinearen Tragwerksanalyse}, doi = {10.25643/bauhaus-universitaet.443}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4438}, year = {1997}, abstract = {Bei der Tragwerksplanung sowohl f{\"u}r Massivkonstruktionen als auch f{\"u}r Stahlkonstruktionen werden zuk{\"u}nftig nichtlineare Berechnungsverfahren in gr{\"o}ßerem Umfang Anwendung finden, als das in der Vergangenheit {\"u}blich bzw. m{\"o}glich war. Wichtige Impulse gehen dabei von der europ{\"a}ischen Normung aus. Bei der Anwendung von Berechnungsverfahren, die die Nichtlinearit{\"a}t des Materialverhaltens ber{\"u}cksichtigen und bei der Ermittlung der Tragsicherheit planm{\"a}ßig ausnutzen, ist es notwendig, die Entwicklung plastischer Deformationen zu verfolgen und bei der Beurteilung des Grenzzustandes der Tragf{\"a}higkeit als Kriterium mit heranzuziehen. Im vorliegenden Beitrag werden mathematische Modelle f{\"u}r folgende Berechnungsaufgaben vorgestellt: Ermittlung der Schnittgr{\"o}ßen und Form{\"a}nderungen in ebenen Stabtragwerken nach Theorie II. Ordnung unter Ber{\"u}cksichtigung der physikalischen Nichtlinearit{\"a}t und Ermittlung von Grenzlasten, die durch Spannungs- und Verformungskriterien definiert sind. Dabei zeigt sich, daß mathematische Modelle auf der Grundlage von Extremalprinzipien und unter Einbeziehung der mathematischen Optimierung effektiv und hinreichend universell formuliert werden k{\"o}nnen. Wie Beispielrechnungen zeigen, ist die Beurteilung der Tragf{\"a}higkeit unter Ber{\"u}cksichtigung von Deformationsbegrenzungen von entscheidender Bedeutung, um Fehleinsch{\"a}tzungen der Tragsicherheit zu vermeiden.}, subject = {Tragwerk}, language = {de} } @inproceedings{RaueTimmlerSchueler1997, author = {Raue, Erich and Timmler, Hans-Georg and Sch{\"u}ler, H.}, title = {Anwendung der mathematischen Optimierung bei der physikalisch und geometrisch nichtlinearen Analyse und Bemessung seismisch beanspruchter Tragwerke}, doi = {10.25643/bauhaus-universitaet.442}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4421}, year = {1997}, abstract = {Moderne Bemessungskonzepte f{\"u}r seismisch beanspruchte Hochbauten, wie die Methode der Kapazit{\"a}ts-bemessung, planen inelastisches Verhalten einzelner Bereiche der Konstruktion beim Entwurf bewußt ein, um so einen Teil der durch das Beben eingetragenen Energie als inelastische Form{\"a}nderungsarbeit zu absorbieren. Wird bei Akzeptanz inelastischen Verhaltens eine bestimmte Belastungsintensit{\"a}t, die als adaptive Grenzlast oder Einspiellast bezeichnet wird, {\"u}berschritten, kann es infolge zyklischer Einwirkungen zu einer unbe-grenzten Akkumulation inelastischer Deformationen kommen. Die adaptive Grenzlast stellt damit f{\"u}r zyklische Einwirkungen eine geeignete Kenngr{\"o}ße zur Bewertung der Tragwerksqualit{\"a}t dar, bei der neben der Sicherung des Gleichgewichts ein bestimmtes Sch{\"a}digungsniveau nicht {\"u}berschritten wird. Im vorliegenden Beitrag werden die Grundz{\"u}ge eines Bemessungs- und Nachweiskonzeptes f{\"u}r seismisch beanspruchte Stahlbetontragwerke, das unter Einbeziehung der Grundprinzipe der Kapazit{\"a}tsbemessung von einem einheitlichen Kriterium zur Beschreibung des Grenzzustandes der Tragf{\"a}higkeit auf der Basis der adaptive Grenzlast ausgeht, vorgestellt. Dabei ist die Absch{\"a}tzung der Verformungen notwendiger Bestandteil des Nachweis- bzw. Bemessungskonzeptes. Bei Druckgliedern ist die Ber{\"u}cksichtigung des Einflusses der Verformungen notwendiger Bestandteil des Bemessungskonzeptes. Entsprechende Erweiterungen der Berechnungsmodelle zur Ber{\"u}cksichtigung des Einflusses geometrisch nichtlinearer Effekte im Sinne einer Theorie II. Ordnung werden vorgestellt.}, subject = {Bauwerk}, language = {de} } @inproceedings{RaueDiener1997, author = {Raue, Erich and Diener, J{\"o}rg}, title = {Numerische Analyse des Langzeitverhaltens hochbeanspruchter Druckglieder unter Ber{\"u}cksichtigung des nichtlinearen Kriechens mit Hilfe der quadratischen Optimierung}, doi = {10.25643/bauhaus-universitaet.441}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4415}, year = {1997}, abstract = {Bei der Berechnung von Stahlbeton- bzw. Spannbetonkonstruktionen m{\"u}ssen die Zusatzverformungen infolge Kriechen und Schwinden des Betons unter anderem dann ber{\"u}cksichtigt werden, wenn durch sie der Schnittgr{\"o}ßenzustand des Gesamttragwerks bzw. einzelner Tragwerksteile ung{\"u}nstig ver{\"a}ndert wird. Das trifft vor allem auf schlanke Druckglieder zu. Die Ermittlung der Kriechausmitte erfolgt im allgemeinen unter Zugrundelegung einer Kriechzahl, die vom Beanspruchungsniveau des Betons unabh{\"a}ngig ist. Diese Annahme ist unzul{\"a}ssig, wenn die Betonspannungen oberhalb des Gebrauchslastniveaus (>30..50\% der Druckfestigkeit) liegen, da in diesem Bereich die Kriechdehnungen {\"u}berproportional zu den kriecherzeugenden Spannungen anwachsen (nichtlineares Kriechen). Theoretische Untersuchungen zum Tragverhalten hochbeanspruchter Stahlbetonst{\"u}tzen unter Ber{\"u}cksichtigung des nichtlinearen Kriechens sind aufgrund der Komplexit{\"a}t des Problems und dem damit verbundenen Berechnungsaufwand gegenw{\"a}rtig in nur geringem Umfang vorhanden. Im vorliegenden Beitrag wird ein Algorithmus vorgestellt, bei dem die Ermittlung der Schnittgr{\"o}ßen und Deformationen auf die sukzessive L{\"o}sung quadratischer Optimierungsaufgaben f{\"u}r im voraus festgelegte Betrachtungszeitpunkte zur{\"u}ckgef{\"u}hrt wird, wobei die Ergebnisse der vorangegangenen Zeitpunkte Eingangswerte f{\"u}r die Berechnung darstellen. Die Ber{\"u}cksichtigung der Nichtlinearit{\"a}t des Kriechens unter hoher Spannung sowie geometrisch nichtlinearer Effekte erfolgt iterativ innerhalb jedes Betrachtungszeitpunkts. Mit der Einf{\"u}hrung von Spannungsbegrenzungen als zus{\"a}tzliche Nebenbedingungen k{\"o}nnen in jeder Iteration Materialplastizierungen, Rißbildungen des Betons bzw. >tension stiffening<-Effekte ohne prinzipielle Ver{\"a}nderung des mathematischen Modells ber{\"u}cksichtigt werden. Durch Nachrechnung von Langzeitversuchen an Stahlbetonst{\"u}tzen erfolgt die Verifikation des Berechnungsmodells}, subject = {Bauteil}, language = {de} } @inproceedings{KirichukKoeppler1997, author = {Kirichuk, A. and K{\"o}ppler, H.}, title = {Numerical Algorithms and Computer Modeling for nonlinear Analysis of Shell Structures}, doi = {10.25643/bauhaus-universitaet.438}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4382}, year = {1997}, abstract = {The dynamic behaviour of shells, which are widely used in construction and mechanical engineering as critical components of machinery and 3-D structures, under static and dynamic loadings is described by system of deep nonlinear differential equations. Solution of these equations can be received with assistance of technique basing on a modern numerical algorithms and computer modeling.. The system of nonlinear differential equations of vibration of the shells is proposed taking into account the inertia forces in the tangential and normal directions. Its solution is based on combination of parameter prolongation method, finite-difference method and the Newton-Kantorovich iterative algorithm that allows plotting the loading trajectories and determination of bifurcation points on them. Package of Applied Programs >SEVSOR< is a computation means to be used in research of deformation, stability and vibration in thin axically-symmetric shells of complicated shape Input data include information on shell geometry, physical and mechanical properties, bearing conditions, types of loadings and load application. Frame output of motion forms in real time or either in decelerated or accelerated time scales for creating cartoons or video films is used for analysis of the compound dynamic processes in shell-type structures.}, subject = {Schale}, language = {en} } @inproceedings{GabbertGrochlaKoeppe1997, author = {Gabbert, U. and Grochla, J. and K{\"o}ppe, H.}, title = {Dynamic-explicit finite element simulation of complex problems in civil engineering by parallel computing}, doi = {10.25643/bauhaus-universitaet.425}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4259}, year = {1997}, abstract = {The paper deals with the simulation of the non-linear and time dependent behaviour of complex structures in engineering. Such simulations have to provide high accuracy in the prediction of deformations and stability, by taking into account the long term influences of the non-linear behaviour of the material as well as the large deformation and contact conditions. The limiting factors of the computer simulation are the computer run time and the memory requirement during solving large scale problems. To overcome these problems we use a dynamic-explicit time integration procedure for the solution of the semi-discrete equations of motion, which is very suited for parallel processing. In the paper at first we give a brief review of the theoretical background of the mechanical modelling and the dynamic-explicit technique for the solution of the semi-discrete equations of motion. Then the concept of parallel processing will be discussed . A test example concludes the paper.}, subject = {Tragwerk}, language = {en} } @inproceedings{Raue2003, author = {Raue, Erich}, title = {Anwendung der mathematischen Optimierung bei der Modellbildung und Analyse des nichtlinearen Tragverhaltens von Stahlbetontragwerken}, doi = {10.25643/bauhaus-universitaet.371}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3717}, year = {2003}, abstract = {In den zur{\"u}ckliegenden Jahren wurden an der Professur Massivbau I umfangreiche Untersuchungen zur Modellbildung und rechnerischen Erfassung des Tragverhaltens von Tragwerken und Tragwerkselementen aus Stahlbeton und Spannbeton unter Ber{\"u}cksichtigung von Rißbildungen und Plastizierungen durchgef{\"u}hrt. Diesen Untersuchungen liegt als einheitliches methodisches Konzept der mathematischen Problembeschreibung und Probleml{\"o}sung die mathematische Optimierung zugrunde. Bereits anl{\"a}ßlich des IKM 1994 [1] hatte der Verfasser Gelegenheit, zusammenfassend {\"u}ber Ergebnisse bei der Anwendung der mathematischen Optimierung im Bereich der nichtlinearen Tragwerksanalyse zu berichten. Der vorliegende Beitrag, soll einen {\"U}berblick {\"u}ber seitdem untersuchte Problemkreise und dabei gewonnene Ergebnisse und Erfahrungen vermitteln. Bei der Anwendung der linearen und quadratischen Optimierung sind wegen der geforderten Linearit{\"a}t der Nebenbedingungen Vereinfachungen bei der Modellbildung des stahlbetonspezifischen Tragverhaltens unumg{\"a}nglich. Besonders betroffen sind die Ans{\"a}tze zur Beschreibungen des Materialverhaltens. Durch den Einsatz allgemeiner nichtlinearer mathematischer Optimierungsmethoden l{\"a}sst sich eine methodisch bedingte Linearisierung des Berechnungsmodells umgehen....}, subject = {Tragwerk}, language = {de} } @inproceedings{RaueTimmlerAdami2003, author = {Raue, Erich and Timmler, Hans-Georg and Adami, Kay}, title = {Physikalisch nichtlineare Analyse von Aussteifungssystemen unter Einbeziehung von Lastfolgeeffekten}, doi = {10.25643/bauhaus-universitaet.349}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3498}, year = {2003}, abstract = {Die physikalisch nichtlineare Analyse von Stahlbetontragwerken unter Ber{\"u}cksichtigung des Einspielverhaltens (adaptives Tragverhalten) mit Methoden der mathematischen Optimierung ist seit Jahren Gegenstand intensiver Forschungsarbeiten am Lehrstuhl Massivbau I der Bauhaus-Universit{\"a}t Weimar. Die dabei entwickelten Modelle und Algorithmen werden im folgenden Beitrag exemplarisch auf die Untersuchung von Aussteifungssystemen in Großtafelbauweise angewendet. Da bei diesen Geb{\"a}uden die aussteifende Konstruktion aus zusammengesetzten großformatigen Betonfertigteilen besteht, wird das Gesamttragverhalten maßgebend durch das Fugentragverhalten bestimmt. Die physikalische Nichtlinearit{\"a}t wird durch das Aufreißen der unbewehrten Horizontalfugen und den verschieblichen Verbund in den Vertikalfugen charakterisiert und entsprechend im Berechnungsmodell ber{\"u}cksichtigt. Beispielrechnungen belegen, dass f{\"u}r die beschriebenen Aussteifungssysteme signifikante Spannungsumlagerungen infolge des nichtlinearen Fugentragverhaltens auftreten. Weiterhin k{\"o}nnen Lastfolgeeffekte rechnerisch nachgewiesen werden. Im Gegensatz zu seismisch beanspruchten Systemen, die in k{\"u}rzester Zeit wiederholt extrem beansprucht werden, ist die Eintrittswahrscheinlichkeit bemessungsrelevanter Windlasten gering.}, subject = {Geb{\"a}ude}, language = {de} }