@article{AlsaadHartmannVoelker, author = {Alsaad, Hayder and Hartmann, Maria and Voelker, Conrad}, title = {The effect of a living wall system designated for greywater treatment on the hygrothermal performance of the facade}, series = {Energy and Buildings}, volume = {2022}, journal = {Energy and Buildings}, number = {volume 255, article 111711}, doi = {10.1016/j.enbuild.2021.111711}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20240116-65299}, pages = {17}, abstract = {Besides their multiple known benefits regarding urban microclimate, living walls can be used as decentralized stand-alone systems to treat greywater locally at the buildings. While this offers numerous environmental advantages, it can have a considerable impact on the hygrothermal performance of the facade as such systems involve bringing large quantities of water onto the facade. As it is difficult to represent complex entities such as plants in the typical simulation tools used for heat and moisture transport, this study suggests a new approach to tackle this challenge by coupling two tools: ENVI-Met and Delphin. ENVI-Met was used to simulate the impact of the plants to determine the local environmental parameters at the living wall. Delphin, on the other hand, was used to conduct the hygrothermal simulations using the local parameters calculated by ENVI-Met. Four wall constructions were investigated in this study: an uninsulated brick wall, a precast concrete plate, a sandy limestone wall, and a double-shell wall. The results showed that the living wall improved the U-value, the exterior surface temperature, and the heat flux through the wall. Moreover, the living wall did not increase the risk of moisture in the wall during winter and eliminated the risk of condensation.}, subject = {Feuchteleitung}, language = {en} } @article{AlsaadHartmannVoelker, author = {Alsaad, Hayder and Hartmann, Maria and V{\"o}lker, Conrad}, title = {Hygrothermal simulation data of a living wall system for decentralized greywater treatment}, series = {Data in Brief}, volume = {2022}, journal = {Data in Brief}, number = {volume 40, article 107741}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.dib.2021.107741}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220106-45483}, pages = {12}, abstract = {This dataset presents the numerical analysis of the heat and moisture transport through a facade equipped with a living wall system designated for greywater treatment. While such greening systems provide many environmental benefits, they involve pumping large quantities of water onto the wall assembly, which can increase the risk of moisture in the wall as well as impaired energetic performance due to increased thermal conductivity with increased moisture content in the building materials. This dataset was acquired through numerical simulation using the coupling of two simulation tools, namely Envi-Met and Delphin. This coupling was used to include the complex role the plants play in shaping the near-wall environmental parameters in the hygrothermal simulations. Four different wall assemblies were investigated, each assembly was assessed twice: with and without the living wall. The presented data include the input and output parameters of the simulations, which were presented in the co-submitted article [1].}, subject = {Kupplung}, language = {en} }