@inproceedings{TahaSherifHegger2004, author = {Taha, M. M. Reda and Sherif, Alaa and Hegger, Josef}, title = {A nouvelle approach for predicting the shear cracking angle in RC and PC beams using artificial neural networks}, doi = {10.25643/bauhaus-universitaet.107}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-1071}, year = {2004}, abstract = {The truss model for predicting shear resistance of reinforced concrete beams has usually been criticized because of its underestimation of the concrete shear strength especially for beams with low shear reinforcement. Two challengers are commonly encountered in any truss model and are responsible for its inaccurate shear strength prediction. First: the cracking angle is usually assumed empirically and second the shear contribution of the arching action is usually neglected. This research introduces a nouvelle approach, by using Artificial Neural Network (ANN) for accurately evaluating the shear cracking angle of reinforced and prestressed concrete beams. The model inputs include the beam geometry, concrete strength, the shear reinforcement ratio and the prestressing stress if any. ...}, subject = {Neuronales Netz}, language = {en} } @inproceedings{Skrinar1997, author = {Skrinar, Matjaz}, title = {A simple FEM Beam Element with an Arbitrary Number of Cracks}, doi = {10.25643/bauhaus-universitaet.428}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4287}, year = {1997}, abstract = {To fulfil safety requirements the changes in the static and/or dynamic behaviour of the structure must be analysed with great care. These changes are often caused by local reduction of the stiffness of the structure caused by the irregularities in the structure, as for example cracks. In simple structures such analysis can be performed directly, by solving equations of motion, but for more complex structures a different approach, usually numerical, must be applied. The problem of crack implementation into the structure behaviour has been studied by many authors who have usually modelled the crack as a massless rotational spring of suitable stiffness placed at the beam at the location where the crack occurs. Recently, the numerical procedure for the computation of the stiffness matrix for a beam element with a single transverse crack has been replaced with the element stiffness matrix written in fully symbolic form. A detailed comparison of the results obtained by using 200 2D finite elements with those obtained with a single cracked beam element has confirmed the usefulness of such element.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{MostBucher2003, author = {Most, Thomas and Bucher, Christian}, title = {Application of the "fictious crack model" to meshless crack growth simulations}, doi = {10.25643/bauhaus-universitaet.335}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3359}, year = {2003}, abstract = {In this paper a meshless component is presented, which internally uses the common meshless interpolation technique >Moving Least Squares<. In contrast to usual meshless integration schemes like the cell quadrature and the nodal integration in this study integration zones with triangular geometry spanned by three nodes are used for 2D analysis. The boundary of the structure is defined by boundary nodes, which are similar to finite element nodes. By using the neighborhood relations of the integration zones an efficient search algorithm to detected the nodes in the influence of the integration points was developed. The components are directly coupled with finite elements by using a penalty method. An widely accepted model to describe the fracture behavior of concrete is the >Fictitious Crack Model< which is applied in this study, which differentiates between micro cracks and macro cracks, with and without force transmission over the crack surface, respectively. In this study the crack surface is discretized by node pairs in form of a polygon, which is part of the boundary. To apply the >Fictitious Crack Model< finite interface elements are included between the crack surface nodes. The determination of the maximum principal strain at the crack tip is done by introducing an influence area around the singularity. On a practical example it is shown that the included elements improve the model by the transmission of the surface forces during monotonic loading and by the representation of the contact forces of closed cracks during reverse loading.}, subject = {Bruchmechanik}, language = {en} }