@article{ZhangNanthakumarLahmeretal., author = {Zhang, Chao and Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Multiple cracks identification for piezoelectric structures}, series = {International Journal of Fracture}, journal = {International Journal of Fracture}, pages = {1 -- 19}, abstract = {Multiple cracks identification for piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenTuanKoenkeBettziecheetal., author = {Nguyen-Tuan, Long and K{\"o}nke, Carsten and Bettzieche, Volker and Lahmer, Tom}, title = {Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams}, series = {Computers \& Structures}, journal = {Computers \& Structures}, pages = {143 -- 154}, abstract = {Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams}, subject = {Angewandte Mathematik}, language = {en} } @article{AchenbachLahmerMorgenthal, author = {Achenbach, Marcus and Lahmer, Tom and Morgenthal, Guido}, title = {Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire - A Comparison of Methods}, series = {14th International Probabilistic Workshop}, journal = {14th International Probabilistic Workshop}, pages = {97 -- 106}, abstract = {Global Sensitivity Analysis of Reinforced Concrete Walls Subjected to Standard Fire—A Comparison of Methods}, subject = {Angewandte Mathematik}, language = {en} } @article{GoebelLahmerOsburg, author = {G{\"o}bel, Luise and Lahmer, Tom and Osburg, Andrea}, title = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, series = {European Journal of Mechanics-A/Solids}, journal = {European Journal of Mechanics-A/Solids}, abstract = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhangHaoWangetal., author = {Zhang, Chao and Hao, Xiao-Li and Wang, Cuixia and Wei, Ning and Rabczuk, Timon}, title = {Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep41398}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170428-31718}, abstract = {Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16\% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} }