@inproceedings{ZollerMaltretPoutrain1997, author = {Zoller, J. and Maltret, J.-L. and Poutrain, K.}, title = {Models generation : from urban simulation to virtual reality}, doi = {10.25643/bauhaus-universitaet.449}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4498}, year = {1997}, abstract = {The aim of researches conducted within gamsau about urban simulation, in particular Remus project, is to allow rapid modeling of large and regular urban zones, for purpose of interactive navigation (like VRML) or for realistic rendering (ray-tracing methods). One of problems to be solved in this context is the multiplicity of data formats : inputs come from different sources, and outputs are for heterogeneous systems of visualization. Typically CSG and boundary representation must be generated, treated and converted during building of models. Furthermore, the generated models can be more or less refined, depending on requests and type of use. This paper describes the general context of data models conversion, problems concerning levels of detail and implementation done in Remus, based on object oriented approach.}, subject = {Stadtplanung}, language = {en} } @inproceedings{ContensinMaltret1997, author = {Contensin, M. and Maltret, J.-L.}, title = {Computer Aided Lighting for architects and designers}, doi = {10.25643/bauhaus-universitaet.448}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4488}, year = {1997}, abstract = {Designing lightings in a 3D-scene is a general complex task for building conception as it is submitted to many constraints such as aesthetics or ergonomics. This is often achieved by experimental trials until reaching an acceptable result. Several rendering softwares (such as Radiance) allow an accurate computation of lighting for each point in a scene, but this is a long process and any modification requires the whole scene to be rendered again to get the result. The first guess is empirical, provided by experience of the operator and rarely submitted to scientific considerations. Our aim is to provide a tool for helping designers to achieve this work in the scope of global illumination. We consider the problem when some data are asked for : on one hand the mean lighting in some zones (for example on a desktop) and on the other hand some qualitative information about location of sources (spotlights on the ceiling, halogens on north wall,...). The system we are conceiving computes the number of light sources, their position and intensities, in order to obtain the lighting effects defined by the user. The algorithms that we use bind together radiosity computations with resolution of a system of constraints.}, subject = {Architektur}, language = {en} }