@article{GuoZhuangChenetal., author = {Guo, Hongwei and Zhuang, Xiaoying and Chen, Pengwan and Alajlan, Naif and Rabczuk, Timon}, title = {Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, doi = {10.1007/s00366-022-01633-6}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220811-46764}, pages = {1 -- 22}, abstract = {In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the physics-informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations.}, subject = {Deep learning}, language = {en} } @article{ChakrabortyAnitescuZhuangetal., author = {Chakraborty, Ayan and Anitescu, Cosmin and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Domain adaptation based transfer learning approach for solving PDEs on complex geometries}, series = {Engineering with Computers}, volume = {2022}, journal = {Engineering with Computers}, doi = {10.1007/s00366-022-01661-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220811-46776}, pages = {1 -- 20}, abstract = {In machine learning, if the training data is independently and identically distributed as the test data then a trained model can make an accurate predictions for new samples of data. Conventional machine learning has a strong dependence on massive amounts of training data which are domain specific to understand their latent patterns. In contrast, Domain adaptation and Transfer learning methods are sub-fields within machine learning that are concerned with solving the inescapable problem of insufficient training data by relaxing the domain dependence hypothesis. In this contribution, this issue has been addressed and by making a novel combination of both the methods we develop a computationally efficient and practical algorithm to solve boundary value problems based on nonlinear partial differential equations. We adopt a meshfree analysis framework to integrate the prevailing geometric modelling techniques based on NURBS and present an enhanced deep collocation approach that also plays an important role in the accuracy of solutions. We start with a brief introduction on how these methods expand upon this framework. We observe an excellent agreement between these methods and have shown that how fine-tuning a pre-trained network to a specialized domain may lead to an outstanding performance compare to the existing ones. As proof of concept, we illustrate the performance of our proposed model on several benchmark problems.}, subject = {Maschinelles Lernen}, language = {en} }