@article{ZanderWetzelKuehletal., author = {Zander, Steffi and Wetzel, Stefanie and K{\"u}hl, Tim and Bertel, Sven}, title = {Underlying Processes of an Inverted Personalization Effect in Multimedia Learning - An Eye-Tracking Study}, series = {Frontiers in Psychology}, volume = {2017}, journal = {Frontiers in Psychology}, number = {Volume 8, Article 2202}, doi = {10.3389/fpsyg.2017.02202}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20180312-37342}, pages = {1 -- 16}, abstract = {One of the frequently examined design principles recommendations in multimedia learning is the personalization principle. Based on empirical evidence this principle states that using personalised messages in multimedia learning is more beneficial than using formal language (e.g. using 'you' instead of 'the'). Although there is evidence that these slight changes in regard to the language style affect learning, motivation and the perceived cognitive load, it remains unclear, (1) whether the positive effects of personalised language can be transferred to all kinds of content of learning materials (e.g. specific potentially aversive health issues) and (2) which are the underlying processes (e.g. attention allocation) of the personalization effect. German university students (N= 37) learned symptoms and causes of cerebral haemorrhages either with a formal or a personalised version of the learning material. Analysis revealed comparable results to the few existing previous studies, indicating an inverted personalization effect for potentially aversive learning material. This effect was specifically revealed in regard to decreased average fixation duration and the number of fixations exclusively on the images in the personalised compared to the formal version. This result can be seen as indicators for an inverted effect of personalization on the level of visual attention.}, subject = {Lernen}, language = {en} } @article{ZhangHaoWangetal., author = {Zhang, Chao and Hao, Xiao-Li and Wang, Cuixia and Wei, Ning and Rabczuk, Timon}, title = {Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation}, series = {Scientific Reports}, journal = {Scientific Reports}, doi = {10.1038/srep41398}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170428-31718}, abstract = {Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16\% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} } @article{ZhangNanthakumarLahmeretal., author = {Zhang, Chao and Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Multiple cracks identification for piezoelectric structures}, series = {International Journal of Fracture}, journal = {International Journal of Fracture}, pages = {1 -- 19}, abstract = {Multiple cracks identification for piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} }