@article{NatarajanChakrabortyThangaveletal., author = {Natarajan, S. and Chakraborty, S. and Thangavel, M. and Bordas, St{\´e}phane Pierre Alain and Rabczuk, Timon}, title = {Size dependent free flexural vibration behavior of functionally graded nanoplates}, series = {Computational Materials Science}, journal = {Computational Materials Science}, pages = {74 -- 80}, abstract = {Size dependent free flexural vibration behavior of functionally graded nanoplates}, subject = {Angewandte Mathematik}, language = {en} } @article{ThaiNguyenXuanNguyenThanhetal., author = {Thai, Chien H. and Nguyen-Xuan, Hung and Nguyen-Thanh, Nhon and Le, T.H. and Nguyen-Thoi, T. and Rabczuk, Timon}, title = {Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, doi = {10.1002/nme.4282}, pages = {571 -- 603}, abstract = {This paper presents a novel numerical procedure based on the framework of isogeometric analysis for static, free vibration, and buckling analysis of laminated composite plates using the first-order shear deformation theory. The isogeometric approach utilizes non-uniform rational B-splines to implement for the quadratic, cubic, and quartic elements. Shear locking problem still exists in the stiffness formulation, and hence, it can be significantly alleviated by a stabilization technique. Several numerical examples are presented to show the performance of the method, and the results obtained are compared with other available ones.}, subject = {Angewandte Mathematik}, language = {en} } @article{ZhaoGuoRabczuk, author = {Zhao, Jun-Hua and Guo, Wanlin and Rabczuk, Timon}, title = {An analytical molecular mechanics model for the elastic properties of crystalline polyethylene}, series = {Journal of Applied Physics}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4745035}, abstract = {We present an analytical model to relate the elastic properties of crystalline polyethylene based on a molecular mechanics approach. Along the polymer chains direction, the united-atom (UA) CH2-CH2 bond stretching, angle bending potentials are replaced with equivalent Euler-Bernoulli beams. Between any two polymer chains, the explicit formulae are derived for the van der Waals interaction represented by the linear springs of different stiffness. Then, the nine independent elastic constants are evaluated systematically using the formulae. The analytical model is finally validated by present united-atom molecular dynamics (MD) simulations and against available all-atom molecular dynamics results in the literature. The established analytical model provides an efficient route for mechanical characterization of crystalline polymers and related materials.}, subject = {Angewandte Mathematik}, language = {en} } @article{JiangParkRabczuk, author = {Jiang, Jin-Wu and Park, Harold S. and Rabczuk, Timon}, title = {Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism}, series = {Nanotechnology}, journal = {Nanotechnology}, abstract = {Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism}, subject = {Angewandte Mathematik}, language = {en} } @article{TalebiZiSilanietal., author = {Talebi, Hossein and Zi, Goangseup and Silani, Mohammad and Samaniego, Esteban and Rabczuk, Timon}, title = {A simple circular cell method for multilevel finite element analysis}, series = {Journal of Applied Mathematics}, journal = {Journal of Applied Mathematics}, doi = {10.1155/2012/526846}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170426-31639}, abstract = {A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{GhorashiRabczukRodenasGarciaetal., author = {Ghorashi, Seyed Shahram and Rabczuk, Timon and R{\´o}denas Garc{\´i}a, Juan Jos{\´e} and Lahmer, Tom}, title = {T-SPLINE BASED XIGA FOR ADAPTIVE MODELING OF CRACKED BODIES}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom and Werner, Frank}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2763}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-27637}, pages = {13}, abstract = {Safety operation of important civil structures such as bridges can be estimated by using fracture analysis. Since the analytical methods are not capable of solving many complicated engineering problems, numerical methods have been increasingly adopted. In this paper, a part of isotropic material which contains a crack is considered as a partial model and the proposed model quality is evaluated. EXtended IsoGeometric Analysis (XIGA) is a new developed numerical approach [1, 2] which benefits from advantages of its origins: eXtended Finite Element Method (XFEM) and IsoGeometric Analysis (IGA). It is capable of simulating crack propagation problems with no remeshing necessity and capturing singular field at the crack tip by using the crack tip enrichment functions. Also, exact representation of geometry is possible using only few elements. XIGA has also been successfully applied for fracture analysis of cracked orthotropic bodies [3] and for simulation of curved cracks [4]. XIGA applies NURBS functions for both geometry description and solution field approximation. The drawback of NURBS functions is that local refinement cannot be defined regarding that it is based on tensorproduct constructs unless multiple patches are used which has also some limitations. In this contribution, the XIGA is further developed to make the local refinement feasible by using Tspline basis functions. Adopting a recovery based error estimator in the proposed approach for evaluation of the model quality and performing the adaptive processes is in progress. Finally, some numerical examples with available analytical solutions are investigated by the developed scheme.}, subject = {Angewandte Informatik}, language = {en} }