@phdthesis{Most2005, author = {Most, Thomas}, title = {Stochastic crack growth simulation in reinforced concrete structures by means of coupled finite element and meshless methods}, doi = {10.25643/bauhaus-universitaet.725}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20051219-7623}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2005}, abstract = {The complex failure process of concrete structures can not be described in detail by standard engineering design formulas. The numerical analysis of crack development in concrete is essential for several problems. In the last decades a large number of research groups have dealt with this topic and several models and algorithms were developed. However, most of these methods show some difficulties and are limited to special cases. The goal of this study was to develop an automatic algorithm for the efficient simulation of multiple cracking in plain and reinforced concrete structures of medium size. For this purpose meshless methods were used to describe the growth of crack surfaces. Two meshless interpolation schemes were improved for a simple application. The cracking process of concrete has been modeled using a stable criterion for crack growth in combination with an improved cohesive crack model which can represent the failure process under combined crack opening and crack sliding very well. This crack growth algorithm was extended in order to represent the fluctuations of the concrete properties by enlarging the single-parameter random field concept for multiple correlated material parameters.}, subject = {Gitterfreie Methode}, language = {en} }