@phdthesis{Alt2000, author = {Alt, Dieter von}, title = {Ausbruchverhalten von Porenbetonplatten bei randnaher Punktst{\"u}tzung}, doi = {10.25643/bauhaus-universitaet.56}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20040310-591}, school = {Bauhaus-Universit{\"a}t Weimar}, year = {2000}, abstract = {Schwerpunkt dieser Arbeit ist die Untersuchung des Ausbruchverhaltens von unbewehrten Porenbetonplatten bei konzentrierter Lasteintragung in Randn{\"a}he. In der Praxis tritt diese Problematik bei Befestigungen oder Verankerungen auf, die eine punktuelle Beanspruchung bewirken. Hauptziel der durchgef{\"u}hrten experimentellen und numerischen Untersuchungen war das Erkennen von Gesetzm{\"a}ßigkeiten f{\"u}r Versagenserscheinungen und f{\"u}r Bruchlasten in Abh{\"a}ngigkeit von variierenden Geometrie- und Materialparametern. Dabei waren Gr{\"o}ße und Lage der Lasteinleitungsstelle sowie die Materialfestigkeit die wichtigsten Einflussfaktoren. Von besonderem Interesse war auch das spr{\"o}de Verhalten des Porenbetonmaterials auf das Ausbruchverhalten. Die Arbeit gliedert sich in drei Hauptteile: die Experimente mit anschließend weiterf{\"u}hrenden numerischen Untersuchungen, sowie Bemessungskonzepten mit Ausbruchgleichungen. Ein weiteres Kapitel behandelt die Zugfestigkeit von Porenbeton. Die Experimente wurde an f{\"u}r Wand- oder Deckenplatten originaldicken Versuchsk{\"o}rpern durchgef{\"u}hrt. Dabei waren die Lagerbedingungen so festgelegt, dass sich m{\"o}glichst ein ungest{\"o}rter Ausbruchk{\"o}rper ausbilden konnte. Numerische Spannungsuntersuchungen {\"u}ber eine r{\"a}umliche Idealisierung der Versuchsk{\"o}rper mit dem Finite- Element- Programmsystem ANSYS gaben Aufschl{\"u}sse {\"u}ber Ort und Gr{\"o}ße von bruchverursachenden Spannungen. Des weiteren wurden {\"u}ber die Versuchsergebnisse hinaus Berechnungen {\"u}ber den Einfluss von Variationen bei der Plattengeometrie durchgef{\"u}hrt. Es wurden Betrachtungen {\"u}ber die Zugfestigkeit als einen maßgebenden Faktor f{\"u}r das Ausbruchverhalten gef{\"u}hrt. Numerische Risssimulationen gaben Aufschluss {\"u}ber den Spannungszustand und den Ablauf der Rissentwicklung.}, subject = {Platte}, language = {de} } @inproceedings{ChristovPetkov2000, author = {Christov, Christo T. and Petkov, Zdravko B.}, title = {DETERMINATION OF THE DYNAMIC STRESS INTENSITY FACTOR USING ADVANCED ENERGY RELEASE EVALUATION}, doi = {10.25643/bauhaus-universitaet.577}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5770}, year = {2000}, abstract = {In this study a simple effective procedure practically based upon the FEM for determination of the dynamic stress intensity factor (DSIF) depending on the input frequency and using an advanced strain energy release evaluation by the simultaneous release of a set of fictitious nodal spring links near the crack tip is developed and applied. The DSIF is expressed in terms of the released energy per unit crack length. The formulations of the linear fracture mechanics are accepted. This technique is theoretically based upon the eigenvalue problem for assessment of the spring stiffnesses and on the modal decomposition of the crack shape. The inertial effects are included into the released energy. A linear elastic material, time-dependent loading of sine type and steady state response of the structure are assumed. The procedure allows the opening, sliding and mixed modes of the structure fracture to be studied. This rational and powerful technique requires a mesh refinement near the crack tip. A numerical test example of a square notched steel plate under tension is given. Opening mode of fracture is studied only. The DSIF is calculated using a coarse mesh and a single node release for the released energy computation as well a fine mesh and simultaneous release of four links for more accurate values. The results are analyzed. Comparisons with the known exact results from a static loading are presented. Conclusions are derived. The values of the DSIF are significantly larger than the values of the corresponding static SIF. Significant peaks of the DSIF are observed near the natural frequences. This approach is general, practicable, reliable and versatile.}, subject = {Bruchmechanik}, language = {en} } @inproceedings{EbertBucher2000, author = {Ebert, Matthias and Bucher, Christian}, title = {Modelling of changing of dynamic and static parameters of damaged R/C}, doi = {10.25643/bauhaus-universitaet.582}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5825}, year = {2000}, abstract = {Dynamic testing for damage assessment as non-destructive method has attracted growing in-terest for systematic inspections and maintenance of civil engineering structures. In this con-text the paper presents the Stochastic Finite Element (SFE) Modeling of the static and dy-namic results of own four point bending experiments with R/C beams. The beams are dam-aged by an increasing load. Between the load levels the dynamic properties are determined. Calculated stiffness loss factors for the displacements and the natural frequencies show differ-ent histories. A FE Model for the beams is developed with a discrete crack formulation. Cor-related random fields are used for structural parameters stiffness and tension strength. The idea is to simulate different crack evolutions. The beams have the same design parameters, but because of the stochastic material properties their undamaged state isn't yet the same. As the structure is loaded a stochastic first crack occurs on the weakest place of the structure. The further crack evolution is also stochastic. These is a great advantage compared with de-terministic formulations. To reduce the computational effort of the Monte Carlo simulation of this nonlinear problem the Latin-Hypercube sampling technique is applied. From the results functions of mean value and standard deviation of displacements and frequencies are calcu-lated. Compared with the experimental results some qualitative phenomena are good de-scribed by the model. Differences occurs especially in the dynamic behavior of the higher load levels. Aim of the investigations is to assess the possibilities of dynamic testing under consideration of effects from stochastic material properties}, subject = {Stahlbetonbauteil}, language = {en} } @misc{Hamzah, type = {Master Thesis}, author = {Hamzah, Abdulrazzak}, title = {L{\"o}sung von Randwertaufgaben der Bruchmechanik mit Hilfe einer approximationsbasierten Kopplung zwischen der Finite-Elemente-Methode und Methoden der komplexen Analysis}, doi = {10.25643/bauhaus-universitaet.4093}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200211-40936}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Das Hauptziel der vorliegenden Arbeit war es, eine stetige Kopplung zwischen der ananlytischen und numerischen L{\"o}sung von Randwertaufgaben mit Singularit{\"a}ten zu realisieren. Durch die inter-polationsbasierte gekoppelte Methode kann eine globale C0 Stetigkeit erzielt werden. F{\"u}r diesen Zweck wird ein spezielle finite Element (Kopplungselement) verwendet, das die Stetigkeit der L{\"o}sung sowohl mit dem analytischen Element als auch mit den normalen CST Elementen gew{\"a}hrleistet. Die interpolationsbasierte gekoppelte Methode ist zwar f{\"u}r beliebige Knotenanzahl auf dem Interface ΓAD anwendbar, aber es konnte durch die Untersuchung von der Interpolationsmatrix und numerische Simulationen festgestellt werden, dass sie schlecht konditioniert ist. Um das Problem mit den numerischen Instabilit{\"a}ten zu bew{\"a}ltigen, wurde eine approximationsbasierte Kopplungsmethode entwickelt und untersucht. Die Stabilit{\"a}t dieser Methode wurde anschließend anhand der Untersuchung von der Gramschen Matrix des verwendeten Basissystems auf zwei Intervallen [-π,π] und [-2π,2π] beurteilt. Die Gramsche Matrix auf dem Intervall [-2π,2π] hat einen g{\"u}nstigeren Konditionszahl in der Abh{\"a}ngigkeit von der Anzahl der Kopplungsknoten auf dem Interface aufgewiesen. Um die dazu geh{\"o}rigen numerischen Instabilit{\"a}ten ausschließen zu k{\"o}nnen wird das Basissystem mit Hilfe vom Gram-Schmidtschen Orthogonalisierungsverfahren auf beiden Intervallen orthogonalisiert. Das orthogonale Basissystem l{\"a}sst sich auf dem Intervall [-2π,2π] mit expliziten Formeln schreiben. Die Methode des konsistentes Sampling, die h{\"a}ufig in der Nachrichtentechnik verwendet wird, wurde zur Realisierung von der approximationsbasierten Kopplung herangezogen. Eine Beschr{\"a}nkung dieser Methode ist es, dass die Anzahl der Sampling-Basisfunktionen muss gleich der Anzahl der Wiederherstellungsbasisfunktionen sein. Das hat dazu gef{\"u}hrt, dass das eingef{\"u}hrt Basissys-tem (mit 2 n Basisfunktionen) nur mit n Basisfunktion verwendet werden kann. Zur L{\"o}sung diese Problems wurde ein alternatives Basissystems (Variante 2) vorgestellt. F{\"u}r die Verwendung dieses Basissystems ist aber eine Transformationsmatrix M n{\"o}tig und bei der Orthogonalisierung des Basissystems auf dem Intervall [-π,π] kann die Herleitung von dieser Matrix kompliziert und aufwendig sein. Die Formfunktionen wurden anschließend f{\"u}r die beiden Varianten hergeleitet und grafisch (f{\"u}r n = 5) dargestellt und wurde gezeigt, dass diese Funktionen die Anforderungen an den Formfunktionen erf{\"u}llen und k{\"o}nnen somit f{\"u}r die FE- Approximation verwendet werden. Anhand numerischer Simulationen, die mit der Variante 1 (mit Orthogonalisierung auf dem Intervall [-2π,2π]) durchgef{\"u}hrt wurden, wurden die grundlegenden Fragen (Beispielsweise: Stetigkeit der Verformungen auf dem Interface ΓAD, Spannungen auf dem analytischen Gebiet) {\"u}ber- pr{\"u}ft.}, subject = {Mathematik}, language = {de} } @inproceedings{KabelePokornyKoska2003, author = {Kabele, Petr and Pokorny, Tomas and Koska, Robert}, title = {Finite Element Analysis of Building Collapse during Demolition}, doi = {10.25643/bauhaus-universitaet.316}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3162}, year = {2003}, abstract = {A computational strategy that employs a multi-level approach to model the physical phenomena that occur during a structural collapse is used to simulate demolition of a multi-story precast concrete building. The building is modeled by means of beam elements, whose rigidity relations have been derived from a fracture mechanics-based model of cracked RC panels and joints. The motion and deformation of the collapsing building are solved as a transient dynamic problem in the finite displacements/ rotations range. The presented approach appears as an efficient way to verify whether a proposed demolition method leads to the desired mechanism of building collapse. By simulating various blasting scenarios, the most suitable demolition procedure is identified.}, subject = {Geschossbau}, language = {en} } @article{LegatiukWeiszPatrault, author = {Legatiuk, Dmitrii and Weisz-Patrault, Daniel}, title = {Coupling of Complex Function Theory and Finite Element Method for Crack Propagation Through Energetic Formulation: Conformal Mapping Approach and Reduction to a Riemann-Hilbert Problem}, series = {Computational Methods and Function Theory}, volume = {2021}, journal = {Computational Methods and Function Theory}, publisher = {Springer}, address = {Heidelberg}, doi = {10.1007/s40315-021-00403-7}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20210805-44763}, pages = {1 -- 23}, abstract = {In this paper we present a theoretical background for a coupled analytical-numerical approach to model a crack propagation process in two-dimensional bounded domains. The goal of the coupled analytical-numerical approach is to obtain the correct solution behaviour near the crack tip by help of the analytical solution constructed by using tools of complex function theory and couple it continuously with the finite element solution in the region far from the singularity. In this way, crack propagation could be modelled without using remeshing. Possible directions of crack growth can be calculated through the minimization of the total energy composed of the potential energy and the dissipated energy based on the energy release rate. Within this setting, an analytical solution of a mixed boundary value problem based on complex analysis and conformal mapping techniques is presented in a circular region containing an arbitrary crack path. More precisely, the linear elastic problem is transformed into a Riemann-Hilbert problem in the unit disk for holomorphic functions. Utilising advantages of the analytical solution in the region near the crack tip, the total energy could be evaluated within short computation times for various crack kink angles and lengths leading to a potentially efficient way of computing the minimization procedure. To this end, the paper presents a general strategy of the new coupled approach for crack propagation modelling. Additionally, we also discuss obstacles in the way of practical realisation of this strategy.}, subject = {Angewandte Mathematik}, language = {en} } @article{MelnikovKadashevichSemenov1997, author = {Melnikov, B. E. and Kadashevich, I. Y. and Semenov, Artem}, title = {Damage of Metalworkses under the Complex Varying Loading}, doi = {10.25643/bauhaus-universitaet.540}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-5409}, year = {1997}, abstract = {The phenomenological and computational aspects of the various damage models applications for the low and multi cyclic fatigue processes are investigated. Damage is considered as internal state variable, describing macroscopic effects of the progressive material degradation, within the framework of continuum damage mechanics. Present analysis is restricted to the case of isotropic damage, which can be modeled by a scalar variable. The strain, force and power types of kinetic equations for the damage evolution description are considered. The original mixed strain-power type damage model is developed for taking into account the different physical fracture mechanism in monotone and cyclic loading. The constitutive equations of plastic flow theory coupled and uncoupled to damage has been considered. The rational algorithm of implementation into finite element code is considered for developed damage models. Set of the computational experiments has been carried out for the various structures (huge aerials, pipelines, fastening units, vessel of nuclear reactor) and cases of loading. The comparison of the predictions of the developed model with experimental data is performed for 1X18H10T steel tubular specimens for complex paths of loading and for complex profiles beams under cyclic loading. Damage field distribution is the basic information for the prediction of crack initiation in structures. The developed method of structural parameter for stress concentration zones is discussed for correcting of crack location. It allows to describe the crack initiation near surface domain as observe in numerous experiments.}, subject = {Stahlkonstruktion}, language = {en} } @inproceedings{MostBucher2003, author = {Most, Thomas and Bucher, Christian}, title = {Application of the "fictious crack model" to meshless crack growth simulations}, doi = {10.25643/bauhaus-universitaet.335}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3359}, year = {2003}, abstract = {In this paper a meshless component is presented, which internally uses the common meshless interpolation technique >Moving Least Squares<. In contrast to usual meshless integration schemes like the cell quadrature and the nodal integration in this study integration zones with triangular geometry spanned by three nodes are used for 2D analysis. The boundary of the structure is defined by boundary nodes, which are similar to finite element nodes. By using the neighborhood relations of the integration zones an efficient search algorithm to detected the nodes in the influence of the integration points was developed. The components are directly coupled with finite elements by using a penalty method. An widely accepted model to describe the fracture behavior of concrete is the >Fictitious Crack Model< which is applied in this study, which differentiates between micro cracks and macro cracks, with and without force transmission over the crack surface, respectively. In this study the crack surface is discretized by node pairs in form of a polygon, which is part of the boundary. To apply the >Fictitious Crack Model< finite interface elements are included between the crack surface nodes. The determination of the maximum principal strain at the crack tip is done by introducing an influence area around the singularity. On a practical example it is shown that the included elements improve the model by the transmission of the surface forces during monotonic loading and by the representation of the contact forces of closed cracks during reverse loading.}, subject = {Bruchmechanik}, language = {en} } @inproceedings{Oeljeklaus2003, author = {Oeljeklaus, Michael}, title = {A Non-Modal Structural-Damage-Location Method and its Application}, doi = {10.25643/bauhaus-universitaet.339}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-3397}, year = {2003}, abstract = {The paper is about model based parameter identification and damage localization of elastomechanical systems using input and output measurements in the frequency domain. An adaptation of the Projective Input Residual Method to subsystem damage identification is presented. For this purpose the projected residuals were adapted with respect to a given subsystem to be analysed. Based on the gradients of these projected subsystem residuals a damage indicator was introduced which is sensitive to parameter changes and structural damages in this subsystem. Since the computations are done w.r.t. the smaller dimension of a subsystem this indicator shows a computational performance gain compared to the non-subsystem approach. This gain in efficiency makes the indicator applicable in online-monitoring and online-damage-diagnosis where continuous and fast data processing is required. The presented application of the indicator to a gantry robot could illustrate the ability of the indicator to indicate and locate real damage of a complex structure. Since in civil engineering applications the system input is often unknown, further investigations will focus on the output-only case since the generalization of the presented methods to this case will broaden its application spectrum.}, subject = {Bruchmechanik}, language = {en} } @article{RenZhuangOterkusetal., author = {Ren, Huilong and Zhuang, Xiaoying and Oterkus, Erkan and Zhu, Hehua and Rabczuk, Timon}, title = {Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase-field fracture by nonlocal operator method}, series = {Engineering with Computers}, volume = {2021}, journal = {Engineering with Computers}, doi = {10.1007/s00366-021-01502-8}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20211207-45388}, pages = {1 -- 22}, abstract = {The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate.}, subject = {Bruchmechanik}, language = {en} }