@article{VogelBreitMaerki2004, author = {Vogel, Manfred and Breit, Manfred and M{\"a}rki, Fabian}, title = {Optimization of 4D Process Planning using Genetic Algorithms}, doi = {10.25643/bauhaus-universitaet.236}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2360}, year = {2004}, abstract = {The presented work focuses on the presentation of a discrete event simulator which can be used for automated sequencing and optimization of building processes. The sequencing is based on the commonly used component-activity-resource relations taking structural and process constraints into account. For the optimization a genetic algorithm approach was developed, implemented and successfully applied to several real life steel constructions. In this contribution we discuss the application of the discrete event simulator including its optimization capabilities on a 4D process model of a steel structure of an automobile recycling facility.}, subject = {Produktmodell}, language = {en} } @article{SchnellenbachHeldHartmann2004, author = {Schnellenbach-Held, Martina and Hartmann, Markus}, title = {Knowledge Based Systems in Distributed Desgin Environments}, doi = {10.25643/bauhaus-universitaet.210}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2106}, year = {2004}, abstract = {Today's building industry not only demands more and more reduced construction time on building site, but also an advanced and mostly construction attendant design phase. Even though there is software available to support design processes in distributed environments, most applications only support simple document based exchange of information. In this paper a knowledge based system is presented to support cooperative, comprehensive design processes in distributed environments. The presented research project is financially supported by the German Research Community (DFG - Deutsche Forschungsgemeinschaft).}, subject = {Produktmodell}, language = {en} } @article{KraftWilhelms2004, author = {Kraft, Bodo and Wilhelms, Nils}, title = {Interactive Distributed Knowledge Support for Conceptual Building Design}, doi = {10.25643/bauhaus-universitaet.209}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2094}, year = {2004}, abstract = {In our project, we develop new tools for the conceptual design phase. During conceptual design, the coarse functionality and organization of a building is more important than a detailed worked out construction. We identify two roles, first the knowledge engineer who is responsible for knowledge definition and maintenance; second the architect who elaborates the conceptual design. The tool for the knowledge engineer is based on graph technology, it is specified using PROGRES and the UPGRADE framework. The tools for the architect are integrated to the industrial CAD tool ArchiCAD. Consistency between knowledge and conceptual design is ensured by the constraint checker, another extension to ArchiCAD.}, subject = {Produktmodell}, language = {en} } @article{NeubergFankEkkerlein2004, author = {Neuberg, Frank and Fank, Ernst and Ekkerlein, Christian}, title = {Integrated Life Cycle Simulation and Assessment of Buildings}, doi = {10.25643/bauhaus-universitaet.235}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2351}, year = {2004}, abstract = {Buildings require both for construction and, due to their comparatively long life cycle for maintenance, significant raw material and energy resources. So far available knowledge about resource consumption during an entire life cycle of a building is still quite rare, because various criteria affect each other and/or overlay mutually. In this contribution a model based software concept is presented using an integrated approach for life cycle simulation and assessment of buildings. The essential point of the development consists of connecting an IFC compliant product model of a building via the Internet with data bases for the resource and energy requirement of building materials. Furthermore, numerical simulations allow calculating and minimizing the energy consumption, the resource requirement, the waste streams and also the noxious emissions. In the context of this paper we present the first release of software programs for architects and engineers, which help them to evaluate their design decisions objectively in early planning steps. Additionally the usage of the software is demonstrated by a test case study for a real world building. By applying this software in practice a substantial contribution for saving energy and natural resources can be provided in the sense of sustainable and ecological building design.}, subject = {Produktmodell}, language = {en} } @inproceedings{WasserfuhrScherer1997, author = {Wasserfuhr, R. and Scherer, Raimar J.}, title = {Information Management in the Concurrent Design Process}, doi = {10.25643/bauhaus-universitaet.445}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-4456}, year = {1997}, abstract = {Former achievements for integrated information management have concentrated on interoperability of applications like e.g. CAD, structural analysis or facility management, based on product models introducing additional application independent model layers (core models). In the last years it has become clear, that besides interoperability of autonomous applications, the concurrent processes of model instantiation and evolution have to be modeled, including the relationship to available project resources, persons, legal requirements and communication infrastructure. This paper discusses some basic concepts for an emerging methodology relating the fields of product modeling, project management and workflow systems by elaborating the concept of a process model, which gives a decomposition of the project goals into executable activities. Integrated information management systems should be related to process models to detect pending activities, deadlocks and alternatives of execution. According to the heterogeneous nature of project communication processes, a method for dynamic classification of ad-hoc activities is suggested, that complements predefined highlevel process definitions. In a brief outline of the system architecture, we show how sophisticated information management systems can be broadly made available by using conventional Internet technologies.}, subject = {Informationsmanagement}, language = {en} } @article{Makanae2004, author = {Makanae, Koji}, title = {Highway Sequence Editor based on the Length-based Highway Product Model}, doi = {10.25643/bauhaus-universitaet.234}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2347}, year = {2004}, abstract = {The highway product model based on the length information of the centerline, and the application system is developed. This paper shows the schema and the modeling process of the product model, which includes geometric elements such as an alignment, lanes, sidewalks, shoulders and sprits, and accessories such as guard fences, plantings and signs. Furthermore, The Highway Sequence Editor (HSE) is developed as an application system to verify the model.}, subject = {Produktmodell}, language = {en} } @article{WeiseKatranuschkovScherer2004, author = {Weise, Matthias and Katranuschkov, Peter and Scherer, Raimar J.}, title = {Generic Services for the Support of Evolving Building Model Data}, doi = {10.25643/bauhaus-universitaet.207}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2077}, year = {2004}, abstract = {Many problems related to data integration in AEC can be better tackled by an approach that takes into account the heterogeneity of tasks, models and applications but does not require continuous consistency of the evolving design data, at each data management operation. Such an approach must incorporate adequate services that can facilitate reintegration of concurrently modified data at reasonably selected coordination points. In this paper we present a set of methods which, used in combination, can achieve that goal. After a description of the principal envisaged cooperative work scenario each of these methods is discussed in detail and current observations drawn from their software realisation are given. Whilst the suggested approach is valid for any EXPRESS-based data model, the practical focus of work has been on facilitating IFC-driven integration.}, subject = {Produktmodell}, language = {en} } @article{StaubFrench2004, author = {Staub-French, Sheryl}, title = {Feature-based Product Modeling for Building Construction}, doi = {10.25643/bauhaus-universitaet.233}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2331}, year = {2004}, abstract = {Current building product models explicitly represent components, attributes of components, and relationships between components. These designer-focused product models, however, do not represent many of the design conditions that are important for construction, such as component similarity, uniformity, and penetrations. Current design and construction tools offer limited support for detecting these construction-specific design conditions. This paper describes the ontology we developed using the manufacturing concept of features to represent the design conditions that are important for construction. The feature ontology provides the blueprint for the additions and changes needed to transform a standard product model into a constructionspecific product model. The ontology formalizes three classes of features, defines the attributes and functions of each feature type, and represents the relationships between features explicitly. The descriptive semantics of the ontology allows practitioners to represent their varied preferences for naming features, specifying features that result from component intersections and the similarity of components, and grouping features that affect a specific construction domain. A software prototype that implements the ontology enables practitioners to transform designer-focused product models into feature-based product models that represent the construction perspective.}, subject = {Produktmodell}, language = {en} } @article{KangMiranda2004, author = {Kang, Shihchung and Miranda, Eduardo}, title = {Automated Simulation of the Erection Activities in Virtual Construction}, doi = {10.25643/bauhaus-universitaet.231}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2310}, year = {2004}, abstract = {The goal of the research is the development of a computer system to plan, simulate and visualize erection processes in construction. In the research construction cranes are treated as robots with predefined degrees of freedom and crane-specific motion planning techniques are developed to generate time-optimized and collision-free paths for each piece to be erected in the project. Using inverse kinematics and structural dynamics simulation, the computer system then computes the crane motions and velocities necessary to achieve the previously calculated paths. The main benefits of the research are the accurate planning and scheduling of crane operations leading to optimization of crane usage and project schedules, as well as improving overall crane safety in the project. This research is aimed at the development of systems that will allow computer-assisted erection of civil infrastructure and ultimately to achieve fully-automated erection processes using robotic cranes...}, subject = {Produktmodell}, language = {en} } @article{vanTreeckRank2004, author = {van Treeck, Christoph and Rank, Ernst}, title = {Analysis of building structure and topology based on Graph Theory}, doi = {10.25643/bauhaus-universitaet.230}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20111215-2308}, year = {2004}, abstract = {Individual views on a building product of people involved in the design process imply different models for planning and calculation. In order to interpret these geometrical, topological and semantical data of a building model we identify a structural component graph, a graph of room faces, a room graph and a relational object graph as aids and we explain algorithms to derive these relations. The application of the technique presented is demonstrated by the analysis and discretization of a sample model in the scope of building energy simulation.}, subject = {Produktmodell}, language = {en} }