@article{Buschow, author = {Buschow, Christopher}, title = {Why Do Digital Native News Media Fail? An Investigation of Failure in the Early Start-Up Phase}, series = {Media and Communication}, volume = {2020}, journal = {Media and Communication}, number = {Volume 8, Issue 2}, publisher = {Cogitatio Press}, address = {Lissabon}, doi = {10.17645/mac.v8i2.2677}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200417-41347}, pages = {51 -- 61}, abstract = {Digital native news media have great potential for improving journalism. Theoretically, they can be the sites where new products, novel revenue streams and alternative ways of organizing digital journalism are discovered, tested, and advanced. In practice, however, the situation appears to be more complicated. Besides the normal pressures facing new businesses, entrepreneurs in digital news are faced with specific challenges. Against the background of general and journalism specific entrepreneurship literature, and in light of a practice-theoretical approach, this qualitative case study research on 15 German digital native news media outlets empirically investigates what barriers curb their innovative capacity in the early start-up phase. In the new media organizations under study here, there are—among other problems—a high degree of homogeneity within founding teams, tensions between journalistic and economic practices, insufficient user orientation, as well as a tendency for organizations to be underfinanced. The patterns of failure investigated in this study can raise awareness, help news start-ups avoid common mistakes before actually entering the market, and help industry experts and investors to realistically estimate the potential of new ventures within the digital news industry.}, subject = {Journalismus}, language = {en} } @article{WolfLondong, author = {Wolf, Mario and Londong, J{\"o}rg}, title = {Transformation der Siedlungswasserwirtschaft - Steuerungsmechanismen im Diskurs ressourcenorientierter Systemans{\"a}tze am Beispiel von Th{\"u}ringen}, series = {Raumforschung und Raumordnung}, volume = {2020}, journal = {Raumforschung und Raumordnung}, number = {Band 78, Heft 4}, publisher = {Sciendo}, doi = {10.2478/rara-2020-0012}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42731}, pages = {397 -- 411}, abstract = {Neuartige Sanit{\"a}rsysteme zielen auf eine ressourcenorientierte Verwertung von Abwasser ab. Erreicht werden soll dies durch die separate Erfassung von Abwasserteilstr{\"o}men. In den Fach{\"o}ffentlichkeiten der Wasserwirtschaft und Raumplanung werden neuartige Sanit{\"a}rsysteme als ein geeigneter Ansatz f{\"u}r die zuk{\"u}nftige Sicherung der Abwasserentsorgung in l{\"a}ndlichen R{\"a}umen betrachtet. Die Praxistauglichkeit dieser Systeme wurde zwar in Forschungsprojekten nachgewiesen, bisher erschweren jedoch f{\"u}r Abwasserentsorger vielf{\"a}ltige Risiken die Einf{\"u}hrung einer ressourcenorientierten Abwasserbewirtschaftung. Ausgehend von einer Untersuchung der Kontexte bei der Umsetzung eines neuartigen Sanit{\"a}rsystems im l{\"a}ndlichen Raum Th{\"u}ringens wird in diesem Beitrag der Frage nachgegangen, wie auf Landesebene mit dem abwasserwirtschaftlichen Instrumentarium die Einf{\"u}hrung von ressourcenorientierten Systemans{\"a}tzen unterst{\"u}tzt werden kann. Zentrale Elemente des Beitrags sind die Darstellung der wesentlichen Transformationsrisiken in Bezug auf die Einf{\"u}hrung innovativer L{\"o}sungsans{\"a}tze, eine Erl{\"a}uterung der spezifischen abwasserwirtschaftlichen Instrumente sowie die Darlegung von Steuerungsans{\"a}tzen,mit denen die Einf{\"u}hrung von neuartigen Sanit{\"a}rsystemen gef{\"o}rdert werden kann. Im Ergebnis wird die Realisierbarkeit von neuartigen Sanit{\"a}rsystemen durch den strategischen Einsatz des Instrumentariums deutlich, gleichwohl die Wasserwirtschaft durch die Erweiterung der bisherigen Systemgrenzen auf die Kooperation mit anderen Bereichen der Daseinsvorsorge angewiesen ist.}, subject = {Raumordnung}, language = {de} } @article{FathiSajadzadehMohammadiSheshkaletal., author = {Fathi, Sadegh and Sajadzadeh, Hassan and Mohammadi Sheshkal, Faezeh and Aram, Farshid and Pinter, Gergo and Felde, Imre and Mosavi, Amir}, title = {The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health}, series = {International Journal of Environmental Research and Public Health}, volume = {2020}, journal = {International Journal of Environmental Research and Public Health}, number = {Volume 17, Issue 7, 2359}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/ijerph17072359}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200402-41225}, pages = {29}, abstract = {Along with environmental pollution, urban planning has been connected to public health. The research indicates that the quality of built environments plays an important role in reducing mental disorders and overall health. The structure and shape of the city are considered as one of the factors influencing happiness and health in urban communities and the type of the daily activities of citizens. The aim of this study was to promote physical activity in the main structure of the city via urban design in a way that the main form and morphology of the city can encourage citizens to move around and have physical activity within the city. Functional, physical, cultural-social, and perceptual-visual features are regarded as the most important and effective criteria in increasing physical activities in urban spaces, based on literature review. The environmental quality of urban spaces and their role in the physical activities of citizens in urban spaces were assessed by using the questionnaire tool and analytical network process (ANP) of structural equation modeling. Further, the space syntax method was utilized to evaluate the role of the spatial integration of urban spaces on improving physical activities. Based on the results, consideration of functional diversity, spatial flexibility and integration, security, and the aesthetic and visual quality of urban spaces plays an important role in improving the physical health of citizens in urban spaces. Further, more physical activities, including motivation for walking and the sense of public health and happiness, were observed in the streets having higher linkage and space syntax indexes with their surrounding texture.}, subject = {Morphologie}, language = {en} } @article{IşıkBueyueksaracLeventEkincietal., author = {I{\c{s}}{\i}k, Ercan and B{\"u}y{\"u}ksara{\c{c}}, Ayd{\i}n and Levent Ekinci, Yunus and Ayd{\i}n, Mehmet Cihan and Harirchian, Ehsan}, title = {The Effect of Site-Specific Design Spectrum on Earthquake-Building Parameters: A Case Study from the Marmara Region (NW Turkey)}, series = {Applied Sciences}, volume = {2020}, journal = {Applied Sciences}, number = {Volume 10, issue 20, article 7247}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app10207247}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20201022-42758}, pages = {23}, abstract = {The Marmara Region (NW Turkey) has experienced significant earthquakes (M > 7.0) to date. A destructive earthquake is also expected in the region. To determine the effect of the specific design spectrum, eleven provinces located in the region were chosen according to the Turkey Earthquake Building Code updated in 2019. Additionally, the differences between the previous and updated regulations of the country were investigated. Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) were obtained for each province by using earthquake ground motion levels with 2\%, 10\%, 50\%, and 68\% probability of exceedance in 50-year periods. The PGA values in the region range from 0.16 to 0.7 g for earthquakes with a return period of 475 years. For each province, a sample of a reinforced-concrete building having two different numbers of stories with the same ground and structural characteristics was chosen. Static adaptive pushover analyses were performed for the sample reinforced-concrete building using each province's design spectrum. The variations in the earthquake and structural parameters were investigated according to different geographical locations. It was determined that the site-specific design spectrum significantly influences target displacements for performance-based assessments of buildings due to seismicity characteristics of the studied geographic location.}, subject = {Erdbeben}, language = {en} } @article{ArtusKoch, author = {Artus, Mathias and Koch, Christian}, title = {State of the art in damage information modeling for RC bridges - A literature review}, series = {Advanced Engineering Informatics}, volume = {2020}, journal = {Advanced Engineering Informatics}, number = {volume 46, article 101171}, publisher = {Elsevier Science}, address = {Amsterdam}, doi = {10.1016/j.aei.2020.101171}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220506-46390}, pages = {1 -- 16}, abstract = {In Germany, bridges have an average age of 40 years. A bridge consumes between 0.4\% and 2\% of its construction cost per year over its entire life cycle. This means that up to 80\% of the construction cost are additionally needed for operation, inspection, maintenance, and destruction. Current practices rely either on paperbased inspections or on abstract specialist software. Every application in the inspection and maintenance sector uses its own data model for structures, inspections, defects, and maintenance. Due to this, data and properties have to be transferred manually, otherwise a converter is necessary for every data exchange between two applications. To overcome this issue, an adequate model standard for inspections, damage, and maintenance is necessary. Modern 3D models may serve as a single source of truth, which has been suggested in the Building Information Modeling (BIM) concept. Further, these models offer a clear visualization of the built infrastructure, and improve not only the planning and construction phases, but also the operation phase of construction projects. BIM is established mostly in the Architecture, Engineering, and Construction (AEC) sector to plan and construct new buildings. Currently, BIM does not cover the whole life cycle of a building, especially not inspection and maintenance. Creating damage models needs the building model first, because a defect is dependent on the building component, its properties and material. Hence, a building information model is necessary to obtain meaningful conclusions from damage information. This paper analyzes the requirements, which arise from practice, and the research that has been done in modeling damage and related information for bridges. With a look at damage categories and use cases related to inspection and maintenance, scientific literature is discussed and synthesized. Finally, research gaps and needs are identified and discussed.}, subject = {Building Information Modeling}, language = {de} } @article{DehghaniSalehiMosavietal., author = {Dehghani, Majid and Salehi, Somayeh and Mosavi, Amir and Nabipour, Narjes and Shamshirband, Shahaboddin and Ghamisi, Pedram}, title = {Spatial Analysis of Seasonal Precipitation over Iran: Co-Variation with Climate Indices}, series = {ISPRS, International Journal of Geo-Information}, volume = {2020}, journal = {ISPRS, International Journal of Geo-Information}, number = {Volume 9, Issue 2, 73}, publisher = {MDPI}, doi = {10.3390/ijgi9020073}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200128-40740}, pages = {23}, abstract = {Temporary changes in precipitation may lead to sustained and severe drought or massive floods in different parts of the world. Knowing the variation in precipitation can effectively help the water resources decision-makers in water resources management. Large-scale circulation drivers have a considerable impact on precipitation in different parts of the world. In this research, the impact of El Ni{\~n}o-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) on seasonal precipitation over Iran was investigated. For this purpose, 103 synoptic stations with at least 30 years of data were utilized. The Spearman correlation coefficient between the indices in the previous 12 months with seasonal precipitation was calculated, and the meaningful correlations were extracted. Then, the month in which each of these indices has the highest correlation with seasonal precipitation was determined. Finally, the overall amount of increase or decrease in seasonal precipitation due to each of these indices was calculated. Results indicate the Southern Oscillation Index (SOI), NAO, and PDO have the most impact on seasonal precipitation, respectively. Additionally, these indices have the highest impact on the precipitation in winter, autumn, spring, and summer, respectively. SOI has a diverse impact on winter precipitation compared to the PDO and NAO, while in the other seasons, each index has its special impact on seasonal precipitation. Generally, all indices in different phases may decrease the seasonal precipitation up to 100\%. However, the seasonal precipitation may increase more than 100\% in different seasons due to the impact of these indices. The results of this study can be used effectively in water resources management and especially in dam operation.}, subject = {Maschinelles Lernen}, language = {en} } @article{NabipourDehghaniMosavietal., author = {Nabipour, Narjes and Dehghani, Majid and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks}, series = {IEEE Access}, volume = {2020}, journal = {IEEE Access}, number = {volume 8}, publisher = {IEEE}, doi = {10.1109/ACCESS.2020.2964584}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200213-40796}, pages = {15210 -- 15222}, abstract = {Hydrological drought forecasting plays a substantial role in water resources management. Hydrological drought highly affects the water allocation and hydropower generation. In this research, short term hydrological drought forecasted based on the hybridized of novel nature-inspired optimization algorithms and Artificial Neural Networks (ANN). For this purpose, the Standardized Hydrological Drought Index (SHDI) and the Standardized Precipitation Index (SPI) were calculated in one, three, and six aggregated months. Then, three states where proposed for SHDI forecasting, and 36 input-output combinations were extracted based on the cross-correlation analysis. In the next step, newly proposed optimization algorithms, including Grasshopper Optimization Algorithm (GOA), Salp Swarm algorithm (SSA), Biogeography-based optimization (BBO), and Particle Swarm Optimization (PSO) hybridized with the ANN were utilized for SHDI forecasting and the results compared to the conventional ANN. Results indicated that the hybridized model outperformed compared to the conventional ANN. PSO performed better than the other optimization algorithms. The best models forecasted SHDI1 with R2 = 0.68 and RMSE = 0.58, SHDI3 with R 2 = 0.81 and RMSE = 0.45 and SHDI6 with R 2 = 0.82 and RMSE = 0.40.}, subject = {Maschinelles Lernen}, language = {en} } @article{GenaVoelkerSettles, author = {Gena, Amayu Wakoya and V{\"o}lker, Conrad and Settles, Gary}, title = {Qualitative and quantitative schlieren optical measurement of the human thermal plume}, series = {Indoor Air}, volume = {2020}, journal = {Indoor Air}, number = {volume 30, issue 4}, publisher = {John Wiley \& Sons}, doi = {10.1111/ina.12674}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200709-41936}, pages = {757 -- 766}, abstract = {A new large-field, high-sensitivity, single-mirror coincident schlieren optical instrument has been installed at the Bauhaus-Universit{\"a}t Weimar for the purpose of indoor air research. Its performance is assessed by the non-intrusive measurement of the thermal plume of a heated manikin. The schlieren system produces excellent qualitative images of the manikin's thermal plume and also quantitative data, especially schlieren velocimetry of the plume's velocity field that is derived from the digital cross-correlation analysis of a large time sequence of schlieren images. The quantitative results are compared with thermistor and hot-wire anemometer data obtained at discrete points in the plume. Good agreement is obtained, once the differences between path-averaged schlieren data and planar anemometry data are reconciled.}, subject = {Raumklima}, language = {en} } @article{MousaviSteinkeJuniorTeixeiraetal., author = {Mousavi, Seyed Nasrollah and Steinke J{\´u}nior, Renato and Teixeira, Eder Daniel and Bocchiola, Daniele and Nabipour, Narjes and Mosavi, Amir and Shamshirband, Shahaboddin}, title = {Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods}, series = {Mathematics}, volume = {2020}, journal = {Mathematics}, number = {Volume 8, Issue 3, 323}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/math8030323}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200402-41140}, pages = {16}, abstract = {Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k\%), and the statistical coefficient of the probability distribution (Nk\%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk\%. The values of the Nk\% coefficient indicated a single mean value for each probability.}, subject = {Maschinelles Lernen}, language = {en} } @article{SadeghzadehMaddahAhmadietal., author = {Sadeghzadeh, Milad and Maddah, Heydar and Ahmadi, Mohammad Hossein and Khadang, Amirhosein and Ghazvini, Mahyar and Mosavi, Amir Hosein and Nabipour, Narjes}, title = {Prediction of Thermo-Physical Properties of TiO2-Al2O3/Water Nanoparticles by Using Artificial Neural Network}, series = {Nanomaterials}, volume = {2020}, journal = {Nanomaterials}, number = {Volume 10, Issue 4, 697}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/nano10040697}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200421-41308}, abstract = {In this paper, an artificial neural network is implemented for the sake of predicting the thermal conductivity ratio of TiO2-Al2O3/water nanofluid. TiO2-Al2O3/water in the role of an innovative type of nanofluid was synthesized by the sol-gel method. The results indicated that 1.5 vol.\% of nanofluids enhanced the thermal conductivity by up to 25\%. It was shown that the heat transfer coefficient was linearly augmented with increasing nanoparticle concentration, but its variation with temperature was nonlinear. It should be noted that the increase in concentration may cause the particles to agglomerate, and then the thermal conductivity is reduced. The increase in temperature also increases the thermal conductivity, due to an increase in the Brownian motion and collision of particles. In this research, for the sake of predicting the thermal conductivity of TiO2-Al2O3/water nanofluid based on volumetric concentration and temperature functions, an artificial neural network is implemented. In this way, for predicting thermal conductivity, SOM (self-organizing map) and BP-LM (Back Propagation-Levenberq-Marquardt) algorithms were used. Based on the results obtained, these algorithms can be considered as an exceptional tool for predicting thermal conductivity. Additionally, the correlation coefficient values were equal to 0.938 and 0.98 when implementing the SOM and BP-LM algorithms, respectively, which is highly acceptable. View Full-Text}, subject = {W{\"a}rmeleitf{\"a}higkeit}, language = {en} }