@article{LahmerIlgLerch, author = {Lahmer, Tom and Ilg, J. and Lerch, Reinhard}, title = {Variance-based sensitivity analyses of piezoelectric models}, series = {Computer Modeling in Engineering \& Sciences}, journal = {Computer Modeling in Engineering \& Sciences}, pages = {105 -- 126}, abstract = {Variance-based sensitivity analyses of piezoelectric models}, subject = {Angewandte Mathematik}, language = {en} } @article{IlyaniAkmarLahmerBordasetal., author = {Ilyani Akmar, A.B. and Lahmer, Tom and Bordas, St{\´e}phane Pierre Alain and Beex, L.A.A. and Rabczuk, Timon}, title = {Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties}, series = {Composite Structures}, journal = {Composite Structures}, doi = {10.1016/j.compstruct.2014.04.014}, pages = {1 -- 17}, abstract = {Uncertainty quantification of dry woven fabrics: A sensitivity analysis on material properties}, subject = {Angewandte Mathematik}, language = {en} } @article{VuBacRafieeZhuangetal., author = {Vu-Bac, N. and Rafiee, Roham and Zhuang, Xiaoying and Lahmer, Tom and Rabczuk, Timon}, title = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, series = {Composites Part B: Engineering}, journal = {Composites Part B: Engineering}, pages = {446 -- 464}, abstract = {Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters}, subject = {Angewandte Mathematik}, language = {en} } @article{GoebelLahmerOsburg, author = {G{\"o}bel, Luise and Lahmer, Tom and Osburg, Andrea}, title = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, series = {European Journal of Mechanics-A/Solids}, journal = {European Journal of Mechanics-A/Solids}, abstract = {Uncertainty analysis in multiscale modeling of concrete based on continuum micromechanics}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{JaouadiLahmer, author = {Jaouadi, Zouhour and Lahmer, Tom}, title = {Topology optimization of structures subjected to multiple load cases by introducing the Epsilon constraint method}, series = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, booktitle = {Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar}, editor = {G{\"u}rlebeck, Klaus and Lahmer, Tom}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2804}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28042}, pages = {7}, abstract = {A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples.}, subject = {Angewandte Informatik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Park, Harold S. and Rabczuk, Timon}, title = {Topology optimization of piezoelectric nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, pages = {316 -- 335}, abstract = {Topology optimization of piezoelectric nanostructures}, subject = {Angewandte Mathematik}, language = {en} } @article{AlemuHabteLahmeretal., author = {Alemu, Yohannes L. and Habte, Bedilu and Lahmer, Tom and Urgessa, Girum}, title = {Topologically preoptimized ground structure (TPOGS) for the optimization of 3D RC buildings}, series = {Asian Journal of Civil Engineering}, volume = {2023}, journal = {Asian Journal of Civil Engineering}, publisher = {Springer International Publishing}, address = {Cham}, doi = {10.1007/s42107-023-00640-2}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20230517-63677}, pages = {1 -- 11}, abstract = {As an optimization that starts from a randomly selected structure generally does not guarantee reasonable optimality, the use of a systemic approach, named the ground structure, is widely accepted in steel-made truss and frame structural design. However, in the case of reinforced concrete (RC) structural optimization, because of the orthogonal orientation of structural members, randomly chosen or architect-sketched framing is used. Such a one-time fixed layout trend, in addition to its lack of a systemic approach, does not necessarily guarantee optimality. In this study, an approach for generating a candidate ground structure to be used for cost or weight minimization of 3D RC building structures with included slabs is developed. A multiobjective function at the floor optimization stage and a single objective function at the frame optimization stage are considered. A particle swarm optimization (PSO) method is employed for selecting the optimal ground structure. This method enables generating a simple, yet potential, real-world representation of topologically preoptimized ground structure while both structural and main architectural requirements are considered. This is supported by a case study for different floor domain sizes.}, subject = {Bodenmechanik}, language = {en} } @article{LahmerNguyenTuanKoenkeetal., author = {Lahmer, Tom and Nguyen-Tuan, Long and K{\"o}nke, Carsten and Bettzieche, Volker}, title = {Thermo-hydro-mechanische 3-D-Simulation von Staumauern-Modellierung und Validierung}, series = {WASSERWIRTSCHAFT}, journal = {WASSERWIRTSCHAFT}, pages = {27 -- 30}, abstract = {Thermo-hydro-mechanische 3-D-Simulation von Staumauern-Modellierung und Validierung}, subject = {Angewandte Mathematik}, language = {de} } @article{SteinLahmerBock, author = {Stein, Peter and Lahmer, Tom and Bock, Sebastian}, title = {Synthese und Analyse von gekoppelten Modellen im konstruktiven Ingenieurbau}, series = {Bautechnik}, journal = {Bautechnik}, pages = {8 -- 11}, abstract = {Synthese und Analyse von gekoppelten Modellen im konstruktiven Ingenieurbau}, subject = {Angewandte Mathematik}, language = {de} } @article{VuBacLahmerZhangetal., author = {Vu-Bac, N. and Lahmer, Tom and Zhang, Yancheng and Zhuang, Xiaoying and Rabczuk, Timon}, title = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, series = {Composites Part B Engineering}, journal = {Composites Part B Engineering}, pages = {80 -- 95}, abstract = {Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs)}, subject = {Angewandte Mathematik}, language = {en} }