@article{NguyenXuanRabczukNguyenThanhetal., author = {Nguyen-Xuan, Hung and Rabczuk, Timon and Nguyen-Thanh, Nhon and Nguyen-Thoi, T. and Bordas, St{\´e}phane Pierre Alain}, title = {A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates}, series = {Computational Mechanics}, journal = {Computational Mechanics}, pages = {679 -- 701}, abstract = {A node-based smoothed finite element method (NS-FEM) for analysis of Reissner-Mindlin plates}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{StackManzoorMenzeletal., author = {Stack, Paul and Manzoor, Farhan and Menzel, Karsten and Cahill, Brian}, title = {A SERVICE ORIENTED ARCHITECTURE FOR BUILDING PERFORMANCE MONITORING}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2893}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28935}, pages = {18}, abstract = {Information technology plays a key role in the everyday operation of buildings and campuses. Many proprietary technologies and methodologies can assist in effective Building Performance Monitoring (BPM) and efficient managing of building resources. The integration of related tools like energy simulator packages, facility, energy and building management systems, and enterprise resource planning systems is of benefit to BPM. However, the complexity to integrating such domain specific systems prevents their common usage. Service Oriented Architecture (SOA) has been deployed successfully in many large multinational companies to create integrated and flexible software systems, but so far this methodology has not been applied broadly to the field of BPM. This paper envisions that SOA provides an effective integration framework for BPM. Service oriented architecture for the ITOBO framework for sustainable and optimised building operation is proposed and an implementation for a building performance monitoring system is introduced.}, subject = {Angewandte Informatik}, language = {en} } @article{NguyenThanhThaiHoangNguyenXuanetal., author = {Nguyen-Thanh, Nhon and Thai-Hoang, C. and Nguyen-Xuan, Hung and Rabczuk, Timon}, title = {A smoothed finite element method for the static and free vibration analysis of shells}, series = {Journal of Civil Engineering and Architecture}, journal = {Journal of Civil Engineering and Architecture}, pages = {13 -- 25}, abstract = {A smoothed finite element method for the static and free vibration analysis of shells}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{NguyenThanhRabczuk, author = {Nguyen-Thanh, Nhon and Rabczuk, Timon}, title = {A SMOOTHED FINITE ELEMENT METHOD FOR THE STATIC AND FREE VIBRATION ANALYSIS OF SHELLS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2877}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28777}, pages = {24}, abstract = {A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{CacaoConstalesKrausshar, author = {Cacao, Isabel and Constales, Denis and Kraußhar, Rolf S{\"o}ren}, title = {A UNIFIED APPROACH FOR THE TREATMENT OF SOME HIGHER DIMENSIONAL DIRAC TYPE EQUATIONS ON SPHERES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2834}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28343}, pages = {8}, abstract = {Using Clifford analysis methods, we provide a unified approach to obtain explicit solutions of some partial differential equations combining the n-dimensional Dirac and Euler operators, including generalizations of the classical time-harmonic Maxwell equations. The obtained regular solutions show strong connections between hypergeometric functions and homogeneous polynomials in the kernel of the Dirac operator.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{SharmakScherer, author = {Sharmak, Wael and Scherer, Raimar J.}, title = {ADAPTABLE PROJECT MANAGEMENT PLANS USING CHANGE TEMPLATES-BASED APPROACH}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2888}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28886}, pages = {14}, abstract = {The uncertainty existing in the construction industry is bigger than in other industries. Consequently, most construction projects do not go totally as planned. The project management plan needs therefore to be adapted repeatedly within the project lifecycle to suit the actual project conditions. Generally, the risks of change in the project management plan are difficult to be identified in advance, especially if these risks are caused by unexpected events such as human errors or changes in the client preferences. The knowledge acquired from different resources is essential to identify the probable deviations as well as to find proper solutions to the faced change risks. Hence, it is necessary to have a knowledge base that contains known solutions for the common exceptional cases that may cause changes in each construction domain. The ongoing research work presented in this paper uses the process modeling technique of Event-driven Process Chains to describe different patterns of structure changes in the schedule networks. This results in several so called "change templates". Under each template different types of change risk/ response pairs can be categorized and stored in a knowledge base. This knowledge base is described as an ontology model populated with reference construction process data. The implementation of the developed approach can be seen as an iterative scheduling cycle that will be repeated within the project lifecycle as new change risks surface. This can help to check the availability of ready solutions in the knowledge base for the situation at hand. Moreover, if the solution is adopted, CPSP, "Change Project Schedule Plan „a prototype developed for the purpose of this research work, will be used to make the needed structure changes of the schedule network automatically based on the change template. What-If scenarios can be implemented using the CPSP prototype in the planning phase to study the effect of specific situations without endangering the success of the project objectives. Hence, better designed and more maintainable project schedules can be achieved.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{ZeiserDahmenRohwedderetal., author = {Zeiser, Andreas and Dahmen, W. and Rohwedder, T. and Schneider, R.}, title = {ADAPTIVE EIGENVALUE COMPUTATION FOR ELLIPTIC OPERATORS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2904}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-29042}, pages = {14}, abstract = {We present recent developments of adaptive wavelet solvers for elliptic eigenvalue problems. We describe the underlying abstract iteration scheme of the preconditioned perturbed iteration. We apply the iteration to a simple model problem in order to identify the main ideas which a numerical realization of the abstract scheme is based upon. This indicates how these concepts carry over to wavelet discretizations. Finally we present numerical results for the Poisson eigenvalue problem on an L-shaped domain.}, subject = {Angewandte Informatik}, language = {en} } @inproceedings{CastilloPerez, author = {Castillo-P{\´e}rez, Ra{\´u}l}, title = {AN APPLICATION OF FORMAL POWER SERIES FOR THE DEVELOPMENT OF OPTICAL FILTERS}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2835}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28354}, pages = {8}, abstract = {The application of a recent method using formal power series is proposed. It is based on a new representation for solutions of Sturm-Liouville equations. This method is used to calculate the transmittance and reflectance coefficients of finite inhomogeneous layers with high accuracy and efficiency. Tailoring the refraction index profile defining the inhomogeneous media it is possible to develop very important applications such as optical filters. A number of profiles were evaluated and then some of them selected in order to perform an improvement of their characteristics via the modification of their profiles.}, subject = {Angewandte Informatik}, language = {en} } @article{BrehmZabelBucher, author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian}, title = {An automatic mode pairing strategy using an enhanced modal assurance citerion based on modal strain energies}, series = {Journal of Sound and Vibration}, journal = {Journal of Sound and Vibration}, doi = {10.1016/j.jsv.2010.07.006}, pages = {5375 -- 5392}, abstract = {In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion.}, subject = {Angewandte Mathematik}, language = {en} } @inproceedings{BrehmZabelBucheretal., author = {Brehm, Maik and Zabel, Volkmar and Bucher, Christian and Ribeiro, D.}, title = {AN AUTOMATIC MODE SELECTION STRATEGY FOR MODEL UPDATING USING THE MODAL ASSURANCE CRITERION AND MODAL STRAIN ENERGIES}, editor = {G{\"u}rlebeck, Klaus and K{\"o}nke, Carsten}, organization = {Bauhaus-Universit{\"a}t Weimar}, issn = {1611-4086}, doi = {10.25643/bauhaus-universitaet.2833}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170314-28330}, pages = {18}, abstract = {In the context of finite element model updating using vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the order of natural frequencies and mode shapes is important. As only limited spatial information is available and noise is present in the measurements, the automatic selection of the most likely numerical mode shape corresponding to a measured mode shape is a difficult task. The most common criterion to indicate corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases. In this paper, the pure mathematical modal assurance criterion will be enhanced by additional physical information of the numerical model in terms of modal strain energies. A numerical example and a benchmark study with real measured data are presented to show the advantages of the enhanced energy based criterion in comparison to the traditional modal assurance criterion.}, subject = {Angewandte Informatik}, language = {en} }