@article{NguyenTuanLahmerDatchevaetal., author = {Nguyen-Tuan, Long and Lahmer, Tom and Datcheva, Maria and Stoimenova, Eugenia and Schanz, Tom}, title = {A novel parameter identification approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses}, series = {Computers and Geotechnics}, journal = {Computers and Geotechnics}, pages = {23 -- 32}, abstract = {A novel parameter identification approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses}, subject = {Angewandte Mathematik}, language = {en} } @article{NguyenTuanLahmerDatchevaetal., author = {Nguyen-Tuan, Long and Lahmer, Tom and Datcheva, Maria and Schanz, Tom}, title = {Global and local sensitivity analyses for coupled thermo-hydro-mechanical problems}, series = {International Journal for Numerical and Analytical Methods in Geomechanics}, journal = {International Journal for Numerical and Analytical Methods in Geomechanics}, abstract = {Global and local sensitivity analyses for coupled thermo-hydro-mechanical problems}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Zi, Goangseup and Rabczuk, Timon}, title = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, series = {Inverse Problems in Science and Engineering}, journal = {Inverse Problems in Science and Engineering}, pages = {153 -- 176}, abstract = {Detection of material interfaces using a regularized level set method in piezoelectric structures}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerZhuangetal., author = {Nanthakumar, S.S. and Lahmer, Tom and Zhuang, Xiaoying and Park, Harold S. and Rabczuk, Timon}, title = {Topology optimization of piezoelectric nanostructures}, series = {Journal of the Mechanics and Physics of Solids}, journal = {Journal of the Mechanics and Physics of Solids}, pages = {316 -- 335}, abstract = {Topology optimization of piezoelectric nanostructures}, subject = {Angewandte Mathematik}, language = {en} } @article{NanthakumarLahmerRabczuk, author = {Nanthakumar, S.S. and Lahmer, Tom and Rabczuk, Timon}, title = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, series = {International Journal for Numerical Methods in Engineering}, journal = {International Journal for Numerical Methods in Engineering}, pages = {960}, abstract = {Detection of multiple flaws in piezoelectric structures using XFEM and level sets}, subject = {Angewandte Mathematik}, language = {en} } @phdthesis{Nanthakumar, author = {Nanthakumar, S.S.}, title = {Inverse and optimization problems in piezoelectric materials using Extended Finite Element Method and Level sets}, doi = {10.25643/bauhaus-universitaet.2709}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20161128-27095}, school = {Bauhaus-Universit{\"a}t Weimar}, abstract = {Piezoelectric materials are used in several applications as sensors and actuators where they experience high stress and electric field concentrations as a result of which they may fail due to fracture. Though there are many analytical and experimental works on piezoelectric fracture mechanics. There are very few studies about damage detection, which is an interesting way to prevent the failure of these ceramics. An iterative method to treat the inverse problem of detecting cracks and voids in piezoelectric structures is proposed. Extended finite element method (XFEM) is employed for solving the inverse problem as it allows the use of a single regular mesh for large number of iterations with different flaw geometries. Firstly, minimization of cost function is performed by Multilevel Coordinate Search (MCS) method. The XFEM-MCS methodology is applied to two dimensional electromechanical problems where flaws considered are straight cracks and elliptical voids. Then a numerical method based on combination of classical shape derivative and level set method for front propagation used in structural optimization is utilized to minimize the cost function. The results obtained show that the XFEM-level set methodology is effectively able to determine the number of voids in a piezoelectric structure and its corresponding locations. The XFEM-level set methodology is improved to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure. The material interfaces are implicitly represented by level sets which are identified by applying regularisation using total variation penalty terms. The formulation is presented for three dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material subdomains in the presence of higher noise levels. Piezoelectric nanostructures exhibit size dependent properties because of surface elasticity and surface piezoelectricity. Initially a study to understand the influence of surface elasticity on optimization of nano elastic beams is performed. The boundary of the nano structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target displacement, are chosen for the numerical examples. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams. Finally a conventional cantilever energy harvester with a piezoelectric nano layer is analysed. The presence of surface piezoelectricity in nano beams and nano plates leads to increase in electromechanical coupling coefficient. Topology optimization of these piezoelectric structures in an energy harvesting device to further increase energy conversion using appropriately modified XFEM-level set algorithm is performed .}, subject = {Finite-Elemente-Methode}, language = {de} } @article{MeyerKohlstockHauptHeldtetal., author = {Meyer-Kohlstock, Daniel and Haupt, Thomas and Heldt, Erik and Heldt, Nils and Kraft, Eckhard}, title = {Biochar as Additive in Biogas-Production from Bio-Waste}, series = {ENERGIES}, journal = {ENERGIES}, doi = {10.3390/en9040247}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170406-31119}, abstract = {Previous publications about biochar in anaerobic digestion show encouraging results with regard to increased biogas yields. This work investigates such effects in a solid-state fermentation of bio-waste. Unlike in previous trials, the influence of biochar is tested with a setup that simulates an industrial-scale biogas plant. Both the biogas and the methane yield increased around 5\% with a biochar addition of 5\%-based on organic dry matter biochar to bio-waste. An addition of 10\% increased the yield by around 3\%. While scaling effects prohibit a simple transfer of the results to industrial-scale plants, and although the certainty of the results is reduced by the heterogeneity of the bio-waste, further research in this direction seems promising.}, subject = {Festphasen-Fermentation}, language = {en} } @article{MeunierWaltherWorsleyetal., author = {Meunier, David and Walther, Christoph and Worsley, Tom and Dahl, Alexander and Le Ma{\^i}tre, H{\´e}l{\`e}ne}, title = {Evolutions of the Reference Values Used in Transport CBA National Guidelines of 3 Countries and What they Reveal}, series = {Transportation Research Procedia 13}, journal = {Transportation Research Procedia 13}, doi = {10.1016/j.trpro.2016.05.011}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170406-31106}, pages = {100 -- 113}, abstract = {The paper presents, analyses and compares the evolution of reference values used in national guidelines issued for cost-benefit analysis of transport infrastructure projects, over the last fifty years, in France, UK and Germany.}, subject = {Verkehrsinfrastruktur}, language = {en} } @article{MetznerSawitzky, author = {Metzner, Steffen and Sawitzky, Mareen}, title = {Priorisierung von Immobilienm{\"a}rkten mittels ELECTRE: Nutzung eines Outranking-Modells im taktischen Portfoliomanagement}, series = {Zeitschrift f{\"u}r Immobilien{\"o}konomie}, journal = {Zeitschrift f{\"u}r Immobilien{\"o}konomie}, doi = {10.1365/s41056-016-0017-y}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170425-31516}, pages = {121 -- 144}, abstract = {In Zeiten volatiler Immobilienm{\"a}rkte und einer hohen Wettbewerbsintensit{\"a}t sind leistungsf{\"a}hige Systeme der Analyse und Entscheidungsunterst{\"u}tzung unverzichtbar. Entscheidungen zu Investitionsstrategien und Einzelinvestitionen basieren zumeist auf mehreren entscheidungsrelevanten Kriterien. Unterschiedliche immobilienwirtschaftliche Entscheidungsalternativen k{\"o}nnen dabei durchaus Kriterienauspr{\"a}gungen aufweisen, die eine bestimmte Alternative nicht als stets besser bzw. stets schlechter ausweisen. Klassische finanzwirtschaftliche Modelle oder verbreitete qualitative Verfahren wie das Scoring k{\"o}nnen die gegebene Komplexit{\"a}t meist nicht angemessen ber{\"u}cksichtigen. Eine Weiterentwicklung immobilienwirtschaftlicher Entscheidungsmodelle ist durch die {\"U}bertragung und Spezifizierung multikriterieller Verfahren der Entscheidungsunterst{\"u}tzung m{\"o}glich. Speziell die Untergruppe des Outranking besch{\"a}ftigt sich mit der schrittweisen Strukturierung, Ordnung und Priorisierung von komplexen Auswahlalternativen. Als spezifische immobilienwirtschaftliche Fragestellung dient hier die Auswahl und Priorisierung von Zielm{\"a}rkten im taktischen Portfoliomanagement eines institutionellen Immobilienportfoliosmit internationaler Ausrichtung. Die Formalisierung des Entscheidungsproblems „Priorisierung von Zielm{\"a}rkten" erfolgt mit dem ELECTRE-Verfahren.}, subject = {Portfoliomanagement}, language = {de} } @article{MeelSatirasetthaveeKanitpongetal., author = {Meel, Inder P. and Satirasetthavee, Dussadee and Kanitpong, Kunnawee and Taneerananon, Pichai}, title = {Using Czech TCT to Assess Safety Impact of Deceleration Lane at Thai U-turns}, series = {ENGINEERING JOURNAL-THAILAND}, journal = {ENGINEERING JOURNAL-THAILAND}, doi = {10.4186/ej.2016.20.1.121}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20170406-31097}, pages = {121 -- 135}, abstract = {Purpose of this study is to evaluate safety impact of the deceleration lane at the Upstream Zone of at-grade U-turns on 4-lane divided Thai highways. A substantial speed reduction is required by vehicles for diverging and making U-turn, and the deceleration lanes are provided for this purpose. These lanes are also providing a storage space for the U-turning vehicles to avoid unnecessary blockage of through lanes and reduce the potential of rear-end collisions. The safety at the U-turn is greatly influenced by the proper or improper use of the deceleration lanes. Subject to their length, full or partial speed adjustment can occur within the deceleration lane also the road users' behavior is influenced. To assess the safety impact, the four groups of U-turns with the varying length of deceleration lanes were identified. Owing to limitation of availability and reliability of road crash data in Thailand, widely accepted Traffic Conflict Technique (TCT) was used as an alternative and proactive methodology. The U-turns' geometric data, traffic conflicts and volume data were recorded in the field at 8 locations, 8 hours per location. Severity Conflict Rate (SCR) was assessed by applying a weighing factor (based on the severity grades according to the Czech TCT) to the observed conflicts related to the conflicting traffic volumes. A comparative higher value of SCR represents a lower level of safety. According to the results, increase in the functional length of the deceleration lane yields a lower value of SCR and a higher level of the road safety.}, subject = {Verkehrssicherheit}, language = {en} }